gregorgabrovsek
commited on
Commit
·
ae54e07
1
Parent(s):
f96545a
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: SloBertAA_Top20_WithoutOOC_082023_extra
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# SloBertAA_Top20_WithoutOOC_082023_extra
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [EMBEDDIA/sloberta](https://huggingface.co/EMBEDDIA/sloberta) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.8485
|
23 |
+
- Accuracy: 0.8909
|
24 |
+
- F1: 0.8908
|
25 |
+
- Precision: 0.8914
|
26 |
+
- Recall: 0.8909
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 12
|
47 |
+
- eval_batch_size: 12
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
56 |
+
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|
|
57 |
+
| 0.5035 | 1.0 | 22717 | 0.4645 | 0.8498 | 0.8495 | 0.8603 | 0.8498 |
|
58 |
+
| 0.3863 | 2.0 | 45434 | 0.4249 | 0.8679 | 0.8680 | 0.8703 | 0.8679 |
|
59 |
+
| 0.3005 | 3.0 | 68151 | 0.4785 | 0.8695 | 0.8700 | 0.8743 | 0.8695 |
|
60 |
+
| 0.2094 | 4.0 | 90868 | 0.5345 | 0.8771 | 0.8769 | 0.8801 | 0.8771 |
|
61 |
+
| 0.1878 | 5.0 | 113585 | 0.6158 | 0.8793 | 0.8792 | 0.8817 | 0.8793 |
|
62 |
+
| 0.1256 | 6.0 | 136302 | 0.6737 | 0.8847 | 0.8847 | 0.8860 | 0.8847 |
|
63 |
+
| 0.0999 | 7.0 | 159019 | 0.7364 | 0.8855 | 0.8857 | 0.8870 | 0.8855 |
|
64 |
+
| 0.0633 | 8.0 | 181736 | 0.8041 | 0.8863 | 0.8862 | 0.8874 | 0.8863 |
|
65 |
+
| 0.0338 | 9.0 | 204453 | 0.8479 | 0.8877 | 0.8877 | 0.8891 | 0.8877 |
|
66 |
+
| 0.0178 | 10.0 | 227170 | 0.8485 | 0.8909 | 0.8908 | 0.8914 | 0.8909 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.26.1
|
72 |
+
- Pytorch 1.8.0
|
73 |
+
- Datasets 2.10.1
|
74 |
+
- Tokenizers 0.13.2
|