gregorgabrovsek commited on
Commit
ae54e07
·
1 Parent(s): f96545a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: SloBertAA_Top20_WithoutOOC_082023_extra
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # SloBertAA_Top20_WithoutOOC_082023_extra
19
+
20
+ This model is a fine-tuned version of [EMBEDDIA/sloberta](https://huggingface.co/EMBEDDIA/sloberta) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.8485
23
+ - Accuracy: 0.8909
24
+ - F1: 0.8908
25
+ - Precision: 0.8914
26
+ - Recall: 0.8909
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 12
47
+ - eval_batch_size: 12
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
56
+ |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|
57
+ | 0.5035 | 1.0 | 22717 | 0.4645 | 0.8498 | 0.8495 | 0.8603 | 0.8498 |
58
+ | 0.3863 | 2.0 | 45434 | 0.4249 | 0.8679 | 0.8680 | 0.8703 | 0.8679 |
59
+ | 0.3005 | 3.0 | 68151 | 0.4785 | 0.8695 | 0.8700 | 0.8743 | 0.8695 |
60
+ | 0.2094 | 4.0 | 90868 | 0.5345 | 0.8771 | 0.8769 | 0.8801 | 0.8771 |
61
+ | 0.1878 | 5.0 | 113585 | 0.6158 | 0.8793 | 0.8792 | 0.8817 | 0.8793 |
62
+ | 0.1256 | 6.0 | 136302 | 0.6737 | 0.8847 | 0.8847 | 0.8860 | 0.8847 |
63
+ | 0.0999 | 7.0 | 159019 | 0.7364 | 0.8855 | 0.8857 | 0.8870 | 0.8855 |
64
+ | 0.0633 | 8.0 | 181736 | 0.8041 | 0.8863 | 0.8862 | 0.8874 | 0.8863 |
65
+ | 0.0338 | 9.0 | 204453 | 0.8479 | 0.8877 | 0.8877 | 0.8891 | 0.8877 |
66
+ | 0.0178 | 10.0 | 227170 | 0.8485 | 0.8909 | 0.8908 | 0.8914 | 0.8909 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.26.1
72
+ - Pytorch 1.8.0
73
+ - Datasets 2.10.1
74
+ - Tokenizers 0.13.2