gregorgabrovsek
commited on
Commit
·
7709b88
1
Parent(s):
6baa8c1
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: BERT_AA_IMDB_Top50_WithoutOOC_082023_MultilingualBertBase
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# BERT_AA_IMDB_Top50_WithoutOOC_082023_MultilingualBertBase
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.8084
|
23 |
+
- Accuracy: 0.8778
|
24 |
+
- F1: 0.8784
|
25 |
+
- Precision: 0.8805
|
26 |
+
- Recall: 0.8778
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 12
|
47 |
+
- eval_batch_size: 12
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
57 |
+
| 0.9482 | 1.0 | 2134 | 0.7728 | 0.8044 | 0.8053 | 0.8216 | 0.8044 |
|
58 |
+
| 0.5411 | 2.0 | 4268 | 0.6033 | 0.8408 | 0.8399 | 0.8484 | 0.8408 |
|
59 |
+
| 0.3207 | 3.0 | 6402 | 0.5670 | 0.8562 | 0.8566 | 0.8647 | 0.8562 |
|
60 |
+
| 0.1831 | 4.0 | 8536 | 0.6218 | 0.8611 | 0.8628 | 0.8686 | 0.8611 |
|
61 |
+
| 0.1056 | 5.0 | 10670 | 0.6755 | 0.8684 | 0.8695 | 0.8737 | 0.8684 |
|
62 |
+
| 0.0534 | 6.0 | 12804 | 0.7564 | 0.8702 | 0.8704 | 0.8734 | 0.8702 |
|
63 |
+
| 0.0311 | 7.0 | 14938 | 0.7718 | 0.8721 | 0.8729 | 0.8754 | 0.8721 |
|
64 |
+
| 0.016 | 8.0 | 17072 | 0.8052 | 0.8739 | 0.8750 | 0.8782 | 0.8739 |
|
65 |
+
| 0.0058 | 9.0 | 19206 | 0.8078 | 0.8772 | 0.8781 | 0.8806 | 0.8772 |
|
66 |
+
| 0.0057 | 10.0 | 21340 | 0.8084 | 0.8778 | 0.8784 | 0.8805 | 0.8778 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.26.1
|
72 |
+
- Pytorch 1.8.0
|
73 |
+
- Datasets 2.10.1
|
74 |
+
- Tokenizers 0.13.2
|