--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-eurosat results: [] --- # vit-base-patch16-224-in21k-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0685 - Accuracy: 0.9844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1239 | 1.0 | 759 | 0.1440 | 0.9685 | | 0.1607 | 2.0 | 1518 | 0.0912 | 0.9778 | | 0.0366 | 3.0 | 2277 | 0.0685 | 0.9844 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.1