graphcore-rahult commited on
Commit
f934f0e
·
1 Parent(s): 0fb475c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: vit-base-patch16-224-in21k-finetuned-eurosat
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # vit-base-patch16-224-in21k-finetuned-eurosat
18
+
19
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.0685
22
+ - Accuracy: 0.9844
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 1
43
+ - eval_batch_size: 1
44
+ - seed: 42
45
+ - distributed_type: IPU
46
+ - gradient_accumulation_steps: 32
47
+ - total_train_batch_size: 32
48
+ - total_eval_batch_size: 4
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_ratio: 0.1
52
+ - num_epochs: 3
53
+ - training precision: Mixed Precision
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
59
+ | 0.1239 | 1.0 | 759 | 0.1440 | 0.9685 |
60
+ | 0.1607 | 2.0 | 1518 | 0.0912 | 0.9778 |
61
+ | 0.0366 | 3.0 | 2277 | 0.0685 | 0.9844 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.20.1
67
+ - Pytorch 1.10.0+cpu
68
+ - Datasets 2.7.1
69
+ - Tokenizers 0.12.1