michaelfeil commited on
Commit
9ac556b
·
verified ·
1 Parent(s): 76755bd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -19
README.md CHANGED
@@ -9,7 +9,7 @@ license: llama3
9
  ---
10
  <a href="https://www.gradient.ai" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/655bb613e8a8971e89944f3e/TSa3V8YpoVagnTYgxiLaO.png" width="200"/></a>
11
 
12
- # Llama-3 8B Gradient Instruct 4194K
13
 
14
  Join our custom agent and long context (262k-1M+) waitlist: https://forms.gle/L6TDY7dozx8TuoUv7
15
 
@@ -17,10 +17,10 @@ Gradient incorporates your data to deploy autonomous assistants that power criti
17
 
18
  For more info see our [End-to-end development service for custom LLMs and AI systems](https://gradient.ai/development-lab)
19
 
20
- This model extends LLama-3 8B's context length from 8k to 4194K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. For this stage, we trained on 185M tokens for this stage, and 1.6B tokens total for all stages, which is ~ 0.01% of Llama-3's original pre-training data.
 
21
 
22
-
23
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/644fac0ce1d7a97f3b653ab1/V8mtPbVCWgwvxTRoUwiI3.png)
24
 
25
  **Approach:**
26
 
@@ -47,7 +47,7 @@ For training data, we generate long contexts by augmenting [SlimPajama](https://
47
  | RoPE theta | 15.3 M | 207.1 M | 1.06B | 2.80B | 45.2B |
48
  | Batch Size | 1 | 1 | 16 | 16 | 2 |
49
  | Gradient Accumulation Steps | 32 | 16 | 1 | 1 | 2 |
50
- | Steps | 30 | 24 | 50 | 50 | 12 |
51
  | Total Tokens | 62914560 | 100663296 | 419430400 | 838860800 | 201326592 |
52
  | Learning Rate | 2.00E-05 | 2.00E-05 | 2.00E-05 | 2.00E-05 | 2.00E-05 |
53
  | # GPUs | 8 | 32 | 512 | 512 | 512 |
@@ -57,30 +57,19 @@ For training data, we generate long contexts by augmenting [SlimPajama](https://
57
 
58
  **Evaluation Details:**
59
 
60
- **[UPDATE THESE NUMBERS]**
61
-
62
  ```
63
- EVAL_MAX_CONTEXT_LENGTH=1040200
64
  EVAL_MIN_CONTEXT_LENGTH=100
65
- EVAL_CONTEXT_INTERVAL=86675
66
  EVAL_DEPTH_INTERVAL=0.2
67
  EVAL_RND_NUMBER_DIGITS=8
68
-
69
- HAYSTACK1:
70
- EVAL_GENERATOR_TOKENS=25
71
-
72
- HAYSTACK2:
73
- EVAL_CONTEXT_INTERVAL=173350
74
- EVAL_GENERATOR_TOKENS=150000
75
-
76
- HAYSTACK3:
77
- EVAL_GENERATOR_TOKENS=925000
78
  ```
79
 
80
  The haystack used is haystack #3, as detailed in this [blog post](https://gradient.ai/blog/the-haystack-matters-for-niah-evals).
81
 
82
  **Quants:**
83
 
 
84
 
85
  ## The Gradient AI Team
86
 
 
9
  ---
10
  <a href="https://www.gradient.ai" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/655bb613e8a8971e89944f3e/TSa3V8YpoVagnTYgxiLaO.png" width="200"/></a>
11
 
12
+ # Llama-3 8B Gradient Instruct 4194K (Work-in-progress)
13
 
14
  Join our custom agent and long context (262k-1M+) waitlist: https://forms.gle/L6TDY7dozx8TuoUv7
15
 
 
17
 
18
  For more info see our [End-to-end development service for custom LLMs and AI systems](https://gradient.ai/development-lab)
19
 
20
+ This model extends LLama-3 8B's context length from 8k to 4194K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai).
21
+ It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. For this stage, we trained on 192M tokens for this stage, and 1.8B tokens total for all stages, which is ~ 0.01% of Llama-3's original pre-training data.
22
 
23
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/644fac0ce1d7a97f3b653ab1/01_d4UYPE47EHlFGyaG9X.png)
 
24
 
25
  **Approach:**
26
 
 
47
  | RoPE theta | 15.3 M | 207.1 M | 1.06B | 2.80B | 45.2B |
48
  | Batch Size | 1 | 1 | 16 | 16 | 2 |
49
  | Gradient Accumulation Steps | 32 | 16 | 1 | 1 | 2 |
50
+ | Steps | 30 | 24 | 50 | 50 | 12 (stopped early) |
51
  | Total Tokens | 62914560 | 100663296 | 419430400 | 838860800 | 201326592 |
52
  | Learning Rate | 2.00E-05 | 2.00E-05 | 2.00E-05 | 2.00E-05 | 2.00E-05 |
53
  | # GPUs | 8 | 32 | 512 | 512 | 512 |
 
57
 
58
  **Evaluation Details:**
59
 
 
 
60
  ```
61
+ EVAL_MAX_CONTEXT_LENGTH=4194200
62
  EVAL_MIN_CONTEXT_LENGTH=100
63
+ EVAL_CONTEXT_INTERVAL=260000
64
  EVAL_DEPTH_INTERVAL=0.2
65
  EVAL_RND_NUMBER_DIGITS=8
 
 
 
 
 
 
 
 
 
 
66
  ```
67
 
68
  The haystack used is haystack #3, as detailed in this [blog post](https://gradient.ai/blog/the-haystack-matters-for-niah-evals).
69
 
70
  **Quants:**
71
 
72
+ There are no currenty quants released. We advise to run the KV Cache in fp16 precision for higher accuracy.
73
 
74
  ## The Gradient AI Team
75