michaelfeil
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -9,7 +9,7 @@ license: llama3
|
|
9 |
---
|
10 |
<a href="https://www.gradient.ai" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/655bb613e8a8971e89944f3e/TSa3V8YpoVagnTYgxiLaO.png" width="200"/></a>
|
11 |
|
12 |
-
# Llama-3 8B Gradient Instruct 4194K
|
13 |
|
14 |
Join our custom agent and long context (262k-1M+) waitlist: https://forms.gle/L6TDY7dozx8TuoUv7
|
15 |
|
@@ -17,10 +17,10 @@ Gradient incorporates your data to deploy autonomous assistants that power criti
|
|
17 |
|
18 |
For more info see our [End-to-end development service for custom LLMs and AI systems](https://gradient.ai/development-lab)
|
19 |
|
20 |
-
This model extends LLama-3 8B's context length from 8k to 4194K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai).
|
|
|
21 |
|
22 |
-
|
23 |
-
![image/png](https://cdn-uploads.huggingface.co/production/uploads/644fac0ce1d7a97f3b653ab1/V8mtPbVCWgwvxTRoUwiI3.png)
|
24 |
|
25 |
**Approach:**
|
26 |
|
@@ -47,7 +47,7 @@ For training data, we generate long contexts by augmenting [SlimPajama](https://
|
|
47 |
| RoPE theta | 15.3 M | 207.1 M | 1.06B | 2.80B | 45.2B |
|
48 |
| Batch Size | 1 | 1 | 16 | 16 | 2 |
|
49 |
| Gradient Accumulation Steps | 32 | 16 | 1 | 1 | 2 |
|
50 |
-
| Steps | 30 | 24 | 50 | 50 | 12
|
51 |
| Total Tokens | 62914560 | 100663296 | 419430400 | 838860800 | 201326592 |
|
52 |
| Learning Rate | 2.00E-05 | 2.00E-05 | 2.00E-05 | 2.00E-05 | 2.00E-05 |
|
53 |
| # GPUs | 8 | 32 | 512 | 512 | 512 |
|
@@ -57,30 +57,19 @@ For training data, we generate long contexts by augmenting [SlimPajama](https://
|
|
57 |
|
58 |
**Evaluation Details:**
|
59 |
|
60 |
-
**[UPDATE THESE NUMBERS]**
|
61 |
-
|
62 |
```
|
63 |
-
EVAL_MAX_CONTEXT_LENGTH=
|
64 |
EVAL_MIN_CONTEXT_LENGTH=100
|
65 |
-
EVAL_CONTEXT_INTERVAL=
|
66 |
EVAL_DEPTH_INTERVAL=0.2
|
67 |
EVAL_RND_NUMBER_DIGITS=8
|
68 |
-
|
69 |
-
HAYSTACK1:
|
70 |
-
EVAL_GENERATOR_TOKENS=25
|
71 |
-
|
72 |
-
HAYSTACK2:
|
73 |
-
EVAL_CONTEXT_INTERVAL=173350
|
74 |
-
EVAL_GENERATOR_TOKENS=150000
|
75 |
-
|
76 |
-
HAYSTACK3:
|
77 |
-
EVAL_GENERATOR_TOKENS=925000
|
78 |
```
|
79 |
|
80 |
The haystack used is haystack #3, as detailed in this [blog post](https://gradient.ai/blog/the-haystack-matters-for-niah-evals).
|
81 |
|
82 |
**Quants:**
|
83 |
|
|
|
84 |
|
85 |
## The Gradient AI Team
|
86 |
|
|
|
9 |
---
|
10 |
<a href="https://www.gradient.ai" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/655bb613e8a8971e89944f3e/TSa3V8YpoVagnTYgxiLaO.png" width="200"/></a>
|
11 |
|
12 |
+
# Llama-3 8B Gradient Instruct 4194K (Work-in-progress)
|
13 |
|
14 |
Join our custom agent and long context (262k-1M+) waitlist: https://forms.gle/L6TDY7dozx8TuoUv7
|
15 |
|
|
|
17 |
|
18 |
For more info see our [End-to-end development service for custom LLMs and AI systems](https://gradient.ai/development-lab)
|
19 |
|
20 |
+
This model extends LLama-3 8B's context length from 8k to 4194K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai).
|
21 |
+
It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. For this stage, we trained on 192M tokens for this stage, and 1.8B tokens total for all stages, which is ~ 0.01% of Llama-3's original pre-training data.
|
22 |
|
23 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/644fac0ce1d7a97f3b653ab1/01_d4UYPE47EHlFGyaG9X.png)
|
|
|
24 |
|
25 |
**Approach:**
|
26 |
|
|
|
47 |
| RoPE theta | 15.3 M | 207.1 M | 1.06B | 2.80B | 45.2B |
|
48 |
| Batch Size | 1 | 1 | 16 | 16 | 2 |
|
49 |
| Gradient Accumulation Steps | 32 | 16 | 1 | 1 | 2 |
|
50 |
+
| Steps | 30 | 24 | 50 | 50 | 12 (stopped early) |
|
51 |
| Total Tokens | 62914560 | 100663296 | 419430400 | 838860800 | 201326592 |
|
52 |
| Learning Rate | 2.00E-05 | 2.00E-05 | 2.00E-05 | 2.00E-05 | 2.00E-05 |
|
53 |
| # GPUs | 8 | 32 | 512 | 512 | 512 |
|
|
|
57 |
|
58 |
**Evaluation Details:**
|
59 |
|
|
|
|
|
60 |
```
|
61 |
+
EVAL_MAX_CONTEXT_LENGTH=4194200
|
62 |
EVAL_MIN_CONTEXT_LENGTH=100
|
63 |
+
EVAL_CONTEXT_INTERVAL=260000
|
64 |
EVAL_DEPTH_INTERVAL=0.2
|
65 |
EVAL_RND_NUMBER_DIGITS=8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
```
|
67 |
|
68 |
The haystack used is haystack #3, as detailed in this [blog post](https://gradient.ai/blog/the-haystack-matters-for-niah-evals).
|
69 |
|
70 |
**Quants:**
|
71 |
|
72 |
+
There are no currenty quants released. We advise to run the KV Cache in fp16 precision for higher accuracy.
|
73 |
|
74 |
## The Gradient AI Team
|
75 |
|