thxCode commited on
Commit
38d1577
·
0 Parent(s):

feat: first commit

Browse files

Signed-off-by: thxCode <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ tags:
7
+ - reranker
8
+ - cross-encoder
9
+ - transformers.js
10
+ pipeline_tag: text-classification
11
+ ---
12
+
13
+ # jina-reranker-v1-tiny-en-GGUF
14
+
15
+ **Model creator**: [Jina AI](https://huggingface.co/jinaai)
16
+ **Original model**: [jina-reranker-v1-tiny-en](https://huggingface.co/jinaai/jina-reranker-v1-tiny-en)
17
+ **GGUF quantization**: based on llama.cpp release [f4d2b](https://github.com/ggerganov/llama.cpp/commit/f4d2b8846a6b34419ff9e9491aee6cd95e444bfc)
18
+
19
+ ---
20
+
21
+ <br><br>
22
+
23
+ <p align="center">
24
+ <img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
25
+ </p>
26
+
27
+ <p align="center">
28
+ <b>Trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
29
+ </p>
30
+
31
+ # jina-reranker-v1-tiny-en
32
+
33
+ This model is designed for **blazing-fast** reranking while maintaining **competitive performance**. What's more, it leverages the power of our [JinaBERT](https://arxiv.org/abs/2310.19923) model as its foundation. `JinaBERT` itself is a unique variant of the BERT architecture that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409). This allows `jina-reranker-v1-tiny-en` to process significantly longer sequences of text compared to other reranking models, up to an impressive **8,192** tokens.
34
+
35
+ To achieve the remarkable speed, the `jina-reranker-v1-tiny-en` employ a technique called knowledge distillation. Here, a complex, but slower, model (like our original [jina-reranker-v1-base-en](https://jina.ai/reranker/)) acts as a teacher, condensing its knowledge into a smaller, faster student model. This student retains most of the teacher's knowledge, allowing it to deliver similar accuracy in a fraction of the time.
36
+
37
+ Here's a breakdown of the reranker models we provide:
38
+
39
+ | Model Name | Layers | Hidden Size | Parameters (Millions) |
40
+ | ------------------------------------------------------------------------------------ | ------ | ----------- | --------------------- |
41
+ | [jina-reranker-v1-base-en](https://jina.ai/reranker/) | 12 | 768 | 137.0 |
42
+ | [jina-reranker-v1-turbo-en](https://huggingface.co/jinaai/jina-reranker-v1-turbo-en) | 6 | 384 | 37.8 |
43
+ | [jina-reranker-v1-tiny-en](https://huggingface.co/jinaai/jina-reranker-v1-tiny-en) | 4 | 384 | 33.0 |
44
+
45
+ > Currently, the `jina-reranker-v1-base-en` model is not available on Hugging Face. You can access it via the [Jina AI Reranker API](https://jina.ai/reranker/).
46
+
47
+ As you can see, the `jina-reranker-v1-turbo-en` offers a balanced approach with **6 layers** and **37.8 million** parameters. This translates to fast search and reranking while preserving a high degree of accuracy. The `jina-reranker-v1-tiny-en` prioritizes speed even further, achieving the fastest inference speeds with its **4-layer**, **33.0 million** parameter architecture. This makes it ideal for scenarios where absolute top accuracy is less crucial.
48
+
49
+ # Usage
50
+
51
+ 1. The easiest way to starting using `jina-reranker-v1-tiny-en` is to use Jina AI's [Reranker API](https://jina.ai/reranker/).
52
+
53
+ ```bash
54
+ curl https://api.jina.ai/v1/rerank \
55
+ -H "Content-Type: application/json" \
56
+ -H "Authorization: Bearer YOUR_API_KEY" \
57
+ -d '{
58
+ "model": "jina-reranker-v1-tiny-en",
59
+ "query": "Organic skincare products for sensitive skin",
60
+ "documents": [
61
+ "Eco-friendly kitchenware for modern homes",
62
+ "Biodegradable cleaning supplies for eco-conscious consumers",
63
+ "Organic cotton baby clothes for sensitive skin",
64
+ "Natural organic skincare range for sensitive skin",
65
+ "Tech gadgets for smart homes: 2024 edition",
66
+ "Sustainable gardening tools and compost solutions",
67
+ "Sensitive skin-friendly facial cleansers and toners",
68
+ "Organic food wraps and storage solutions",
69
+ "All-natural pet food for dogs with allergies",
70
+ "Yoga mats made from recycled materials"
71
+ ],
72
+ "top_n": 3
73
+ }'
74
+ ```
75
+
76
+ 2. Alternatively, you can use the latest version of the `sentence-transformers>=0.27.0` library. You can install it via pip:
77
+
78
+ ```bash
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then, you can use the following code to interact with the model:
83
+
84
+ ```python
85
+ from sentence_transformers import CrossEncoder
86
+
87
+ # Load the model, here we use our tiny sized model
88
+ model = CrossEncoder("jinaai/jina-reranker-v1-tiny-en", trust_remote_code=True)
89
+
90
+ # Example query and documents
91
+ query = "Organic skincare products for sensitive skin"
92
+ documents = [
93
+ "Eco-friendly kitchenware for modern homes",
94
+ "Biodegradable cleaning supplies for eco-conscious consumers",
95
+ "Organic cotton baby clothes for sensitive skin",
96
+ "Natural organic skincare range for sensitive skin",
97
+ "Tech gadgets for smart homes: 2024 edition",
98
+ "Sustainable gardening tools and compost solutions",
99
+ "Sensitive skin-friendly facial cleansers and toners",
100
+ "Organic food wraps and storage solutions",
101
+ "All-natural pet food for dogs with allergies",
102
+ "Yoga mats made from recycled materials"
103
+ ]
104
+
105
+ results = model.rank(query, documents, return_documents=True, top_k=3)
106
+ ```
107
+
108
+ 3. You can also use the `transformers` library to interact with the model programmatically.
109
+
110
+ ```python
111
+ !pip install transformers
112
+ from transformers import AutoModelForSequenceClassification
113
+
114
+ model = AutoModelForSequenceClassification.from_pretrained(
115
+ 'jinaai/jina-reranker-v1-tiny-en', num_labels=1, trust_remote_code=True
116
+ )
117
+
118
+ # Example query and documents
119
+ query = "Organic skincare products for sensitive skin"
120
+ documents = [
121
+ "Eco-friendly kitchenware for modern homes",
122
+ "Biodegradable cleaning supplies for eco-conscious consumers",
123
+ "Organic cotton baby clothes for sensitive skin",
124
+ "Natural organic skincare range for sensitive skin",
125
+ "Tech gadgets for smart homes: 2024 edition",
126
+ "Sustainable gardening tools and compost solutions",
127
+ "Sensitive skin-friendly facial cleansers and toners",
128
+ "Organic food wraps and storage solutions",
129
+ "All-natural pet food for dogs with allergies",
130
+ "Yoga mats made from recycled materials"
131
+ ]
132
+
133
+ # construct sentence pairs
134
+ sentence_pairs = [[query, doc] for doc in documents]
135
+
136
+ scores = model.compute_score(sentence_pairs)
137
+ ```
138
+
139
+ 4. You can also use the `transformers.js` library to run the model directly in JavaScript (in-browser, Node.js, Deno, etc.)!
140
+
141
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
142
+ ```bash
143
+ npm i @xenova/transformers
144
+ ```
145
+
146
+ Then, you can use the following code to interact with the model:
147
+ ```js
148
+ import { AutoTokenizer, AutoModelForSequenceClassification } from '@xenova/transformers';
149
+
150
+ const model_id = 'jinaai/jina-reranker-v1-tiny-en';
151
+ const model = await AutoModelForSequenceClassification.from_pretrained(model_id, { quantized: false });
152
+ const tokenizer = await AutoTokenizer.from_pretrained(model_id);
153
+
154
+ /**
155
+ * Performs ranking with the CrossEncoder on the given query and documents. Returns a sorted list with the document indices and scores.
156
+ * @param {string} query A single query
157
+ * @param {string[]} documents A list of documents
158
+ * @param {Object} options Options for ranking
159
+ * @param {number} [options.top_k=undefined] Return the top-k documents. If undefined, all documents are returned.
160
+ * @param {number} [options.return_documents=false] If true, also returns the documents. If false, only returns the indices and scores.
161
+ */
162
+ async function rank(query, documents, {
163
+ top_k = undefined,
164
+ return_documents = false,
165
+ } = {}) {
166
+ const inputs = tokenizer(
167
+ new Array(documents.length).fill(query),
168
+ { text_pair: documents, padding: true, truncation: true }
169
+ )
170
+ const { logits } = await model(inputs);
171
+ return logits.sigmoid().tolist()
172
+ .map(([score], i) => ({
173
+ corpus_id: i,
174
+ score,
175
+ ...(return_documents ? { text: documents[i] } : {})
176
+ })).sort((a, b) => b.score - a.score).slice(0, top_k);
177
+ }
178
+
179
+ // Example usage:
180
+ const query = "Organic skincare products for sensitive skin"
181
+ const documents = [
182
+ "Eco-friendly kitchenware for modern homes",
183
+ "Biodegradable cleaning supplies for eco-conscious consumers",
184
+ "Organic cotton baby clothes for sensitive skin",
185
+ "Natural organic skincare range for sensitive skin",
186
+ "Tech gadgets for smart homes: 2024 edition",
187
+ "Sustainable gardening tools and compost solutions",
188
+ "Sensitive skin-friendly facial cleansers and toners",
189
+ "Organic food wraps and storage solutions",
190
+ "All-natural pet food for dogs with allergies",
191
+ "Yoga mats made from recycled materials",
192
+ ]
193
+
194
+ const results = await rank(query, documents, { return_documents: true, top_k: 3 });
195
+ console.log(results);
196
+ ```
197
+
198
+
199
+ That's it! You can now use the `jina-reranker-v1-tiny-en` model in your projects.
200
+
201
+ # Evaluation
202
+
203
+ We evaluated Jina Reranker on 3 key benchmarks to ensure top-tier performance and search relevance.
204
+
205
+ | Model Name | NDCG@10 (17 BEIR datasets) | NDCG@10 (5 LoCo datasets) | Hit Rate (LlamaIndex RAG) |
206
+ | ------------------------------------------ | -------------------------- | ------------------------- | ------------------------- |
207
+ | `jina-reranker-v1-base-en` | **52.45** | **87.31** | **85.53** |
208
+ | `jina-reranker-v1-turbo-en` | **49.60** | **69.21** | **85.13** |
209
+ | `jina-reranker-v1-tiny-en` (you are here) | **48.54** | **70.29** | **85.00** |
210
+ | `mxbai-rerank-base-v1` | 49.19 | - | 82.50 |
211
+ | `mxbai-rerank-xsmall-v1` | 48.80 | - | 83.69 |
212
+ | `ms-marco-MiniLM-L-6-v2` | 48.64 | - | 82.63 |
213
+ | `ms-marco-MiniLM-L-4-v2` | 47.81 | - | 83.82 |
214
+ | `bge-reranker-base` | 47.89 | - | 83.03 |
215
+
216
+ **Note:**
217
+
218
+ - `NDCG@10` is a measure of ranking quality, with higher scores indicating better search results. `Hit Rate` measures the percentage of relevant documents that appear in the top 10 search results.
219
+ - The results of LoCo datasets on other models are not available since they **do not support** long documents more than 512 tokens.
220
+
221
+ For more details, please refer to our [benchmarking sheets](https://docs.google.com/spreadsheets/d/1V8pZjENdBBqrKMzZzOWc2aL60wtnR0yrEBY3urfO5P4/edit?usp=sharing).
222
+
223
+ # Contact
224
+
225
+ Join our [Discord community](https://discord.jina.ai/) and chat with other community members about ideas.
jina-reranker-v1-tiny-en-FP16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad9f450c1053a431e2e3746d1f9f7768fb9183cf0796e046983a3449dca093c2
3
+ size 67504480
jina-reranker-v1-tiny-en-Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbd88c851aaf373569d38e25d34203f8e7ab17a899f767f1f035245cb00b1188
3
+ size 31645024
jina-reranker-v1-tiny-en-Q3_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9de4caa94e08899432aac407e4ee9124d61be5653a94dd57626a60b8c704692
3
+ size 32124256
jina-reranker-v1-tiny-en-Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed226ea4efdb7cc8409961e22969231c90aa1194344486ed9e54b97a97e86b3a
3
+ size 31958368
jina-reranker-v1-tiny-en-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a31ab756f72581e1b457c10228abb3fa9778b15726191db5353339ed8f96aba
3
+ size 33257824
jina-reranker-v1-tiny-en-Q5_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:167e2325c46fe7b1edcf6038823fab5dc2afefe17a783867462257ce369e9811
3
+ size 33138016
jina-reranker-v1-tiny-en-Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b18581e13d637277a588544b5dc8cbf7860c697b881443cdb618fee357ab4b74
3
+ size 33829216
jina-reranker-v1-tiny-en-Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64989a5f36dbde883704060d8885771f3f6878d7980c8b5b8ebda99a26bc4958
3
+ size 36105568
jina-reranker-v1-tiny-en-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0defc1f8a1f4dd22183124a2a25a97765603e5a9e42258046c9b2c8a26d1f553
3
+ size 36676960