madlad400-8b-lm / decoderonlyt5_modeling.py
amyeroberts's picture
amyeroberts HF staff
Duplicate from jbochi/madlad400-8b-lm
d1017b4
import copy
import math
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.models.t5 import modeling_t5
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.utils import (
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .decoderonlyt5_config import DecoderOnlyT5Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DecoderOnlyT5Config"
class DecoderOnlyT5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6, use_scale=True, center_scale_at_zero=False):
"""
Construct a layernorm module in the T5 style No bias and no subtraction of mean.
"""
super().__init__()
if use_scale:
self.weight = nn.Parameter(torch.ones(hidden_size))
else:
assert not center_scale_at_zero
self.weight = None
self.center_scale_at_zero = center_scale_at_zero
self.variance_epsilon = eps
def forward(self, hidden_states):
# https://github.com/google/flaxformer/blob/ea17eb012a1d340ddff017b7a534c2162aaec34c/flaxformer/components/layer_norm.py#L30
# layer norm should always be calculated in float32
mean2 = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(mean2 + self.variance_epsilon)
# convert into float16 if necessary
if self.weight is None:
return hidden_states
if self.weight.dtype == torch.float16:
hidden_states = hidden_states.to(torch.float16)
if self.center_scale_at_zero:
return (self.weight + 1.0) * hidden_states
else:
return self.weight * hidden_states
class DecoderOnlyT5LayerFF(modeling_t5.T5LayerFF):
def __init__(self, config: DecoderOnlyT5Config):
super(modeling_t5.T5LayerFF, self).__init__()
if config.is_gated_act:
self.DenseReluDense = modeling_t5.T5DenseGatedActDense(config)
else:
self.DenseReluDense = modeling_t5.T5DenseActDense(config)
if not config.parallel_layers:
self.layer_norm = modeling_t5.DecoderOnlyT5LayerNorm(
config.d_model, eps=config.layer_norm_epsilon
)
else:
self.layer_norm = nn.Identity()
self.dropout = nn.Dropout(config.dropout_rate)
# LlamaRotaryEmbedding
class DecoderOnlyT5RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
)
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings,
device=self.inv_freq.device,
dtype=torch.get_default_dtype(),
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos[position_ids].unsqueeze(unsqueeze_dim)
sin = sin[position_ids].unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# https://github.com/huggingface/transformers/blob/7ee995fd9c692761c4601ddbffa2ac2ec9f27b0b/src/transformers/models/llama/modeling_llama.py#L263
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(
batch, num_key_value_heads, n_rep, slen, head_dim
)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class DecoderOnlyT5Attention(modeling_t5.T5Attention):
"""
Supports both multi-head and multi-query attention.
https://arxiv.org/abs/1911.02150
https://github.com/google/flaxformer/blob/ea17eb012a1d340ddff017b7a534c2162aaec34c/flaxformer/components/attention/dense_attention.py#L292
"""
def __init__(self, config: DecoderOnlyT5Config, has_relative_attention_bias=False):
super(modeling_t5.T5Attention, self).__init__()
self.is_decoder = config.is_decoder
assert not has_relative_attention_bias
assert config.use_rotary_embedding
self.d_model = config.d_model
self.head_dim = config.d_kv
self.num_heads = config.num_heads
self.num_key_value_heads = 1 if config.multi_query_attention else self.n_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.attention_dropout = config.dropout_rate
self.inner_dim = self.num_heads * self.head_dim
self.kv_inner_dim = self.num_key_value_heads * self.head_dim
self.rotary_emb = DecoderOnlyT5RotaryEmbedding(
self.head_dim,
max_position_embeddings=config.relative_attention_max_distance,
base=config.rotary_embedding_max_timescale,
)
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.kv_inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.kv_inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
self.pruned_heads = set()
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
key_value_states=None,
position_bias=None,
mask: Optional[torch.Tensor] = None,
layer_head_mask=None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
assert key_value_states is None
assert position_bias is None
assert layer_head_mask is None
bsz, q_len, _ = hidden_states.size()
query_states = self.q(hidden_states)
key_states = self.k(hidden_states)
value_states = self.v(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if mask is not None:
if mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {mask.size()}"
)
attn_weights = attn_weights + mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.inner_dim)
attn_output = self.o(attn_output)
present_key_value_state = (
(key_states, value_states) if (self.is_decoder and use_cache) else None
)
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
class DecoderOnlyT5LayerSelfAttention(modeling_t5.T5LayerSelfAttention):
def __init__(self, config, has_relative_attention_bias=False):
super(modeling_t5.T5LayerSelfAttention, self).__init__()
self.SelfAttention = DecoderOnlyT5Attention(
config, has_relative_attention_bias=has_relative_attention_bias
)
self.layer_norm = DecoderOnlyT5LayerNorm(
config.d_model,
eps=config.layer_norm_epsilon,
use_scale=True,
center_scale_at_zero=True,
)
self.dropout = nn.Dropout(config.dropout_rate)
self.parallel_layers = config.parallel_layers
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
position_ids=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
):
if not self.parallel_layers:
x = self.layer_norm(hidden_states)
else:
x = hidden_states
attention_output = self.SelfAttention(
x,
mask=attention_mask,
position_bias=position_bias,
position_ids=position_ids,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
if not self.parallel_layers:
# When parallel_layers is True, the residual connection is applied
# in the decoder block instead of here.
hidden_states = hidden_states + self.dropout(attention_output[0])
else:
hidden_states = attention_output[0]
outputs = (hidden_states,) + attention_output[
1:
] # add attentions if we output them
return outputs
class DecoderOnlyT5Block(modeling_t5.T5Block):
def __init__(self, config, has_relative_attention_bias=False):
super(modeling_t5.T5Block, self).__init__()
self.is_decoder = config.is_decoder
self.is_decoder_only = config.is_decoder_only
self.layer = nn.ModuleList()
self.layer.append(
DecoderOnlyT5LayerSelfAttention(
config, has_relative_attention_bias=has_relative_attention_bias
)
)
if self.is_decoder:
if config.is_decoder_only:
self.layer.append(nn.Identity())
else:
self.layer.append(modeling_t5.T5LayerCrossAttention(config))
self.parallel_layers = config.parallel_layers
self.layer.append(DecoderOnlyT5LayerFF(config))
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
position_ids=None,
encoder_hidden_states=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
cross_attn_layer_head_mask=None,
return_dict=True,
):
assert encoder_attention_mask is None
assert encoder_decoder_position_bias is None
assert cross_attn_layer_head_mask is None
if past_key_value is not None:
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
if len(past_key_value) != expected_num_past_key_values:
raise ValueError(
f"There should be {expected_num_past_key_values} past states. "
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
f"Got {len(past_key_value)} past key / value states"
)
self_attn_past_key_value = past_key_value[:2]
else:
self_attn_past_key_value = None
ff_layer = self.layer[-1]
if self.parallel_layers:
# https://github.com/google/flaxformer/blob/ea17eb012a1d340ddff017b7a534c2162aaec34c/flaxformer/architectures/t5/t5_architecture.py#L563-L568
x = self.layer[0].layer_norm(hidden_states)
ff_output = ff_layer(x)
else:
x = hidden_states
self_attention_outputs = self.layer[0](
x,
attention_mask=attention_mask,
position_bias=position_bias,
position_ids=position_ids,
layer_head_mask=layer_head_mask,
past_key_value=self_attn_past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
x, present_key_value_state = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[
2:
] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 training
if x.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(x).any(),
torch.finfo(x.dtype).max - 1000,
torch.finfo(x.dtype).max,
)
x = torch.clamp(x, min=-clamp_value, max=clamp_value)
do_cross_attention = (
self.is_decoder
and not self.is_decoder_only
and encoder_hidden_states is not None
)
assert not do_cross_attention
if self.parallel_layers:
# https://github.com/google/flaxformer/blob/ea17eb012a1d340ddff017b7a534c2162aaec34c/flaxformer/architectures/t5/t5_architecture.py#L534-L578
x = x + ff_output
x *= 2**-0.5
hidden_states = hidden_states + self.layer[0].dropout(x)
else:
hidden_states = ff_layer(x)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(
hidden_states, min=-clamp_value, max=clamp_value
)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (present_key_value_state,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
class DecoderOnlyT5Stack(modeling_t5.T5Stack):
def __init__(self, config, embed_tokens=None):
super(modeling_t5.T5Stack, self).__init__(config)
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.block = nn.ModuleList(
[
DecoderOnlyT5Block(
config,
has_relative_attention_bias=(
config.has_relative_attention_bias and bool(i == 0)
),
)
for i in range(config.num_layers)
]
)
self.final_layer_norm = DecoderOnlyT5LayerNorm(
config.d_model,
eps=config.layer_norm_epsilon,
use_scale=False,
center_scale_at_zero=False,
)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
def forward(
self,
input_ids=None,
position_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(self.first_device)
self.embed_tokens = self.embed_tokens.to(self.first_device)
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds"
)
if position_ids is None:
seq_length = input_ids.shape[1]
past_key_values_length = (
0 if past_key_values is None else past_key_values[0][0].shape[2]
)
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length,
seq_length + past_key_values_length,
dtype=torch.long,
device=device,
).unsqueeze(0)
if inputs_embeds is None:
if self.embed_tokens is None:
raise ValueError(
"You have to initialize the model with valid token embeddings"
)
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
# required mask seq length can be calculated via length of past
mask_seq_length = (
past_key_values[0][0].shape[2] + seq_length
if past_key_values is not None
else seq_length
)
if use_cache is True:
if not self.is_decoder:
raise ValueError(
f"`use_cache` can only be set to `True` if {self} is used as a decoder"
)
if attention_mask is None:
attention_mask = torch.ones(
batch_size, mask_seq_length, device=inputs_embeds.device
)
# initialize past_key_values with `None` if past does not exist
if past_key_values is None:
past_key_values = [None] * len(self.block)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask = self.get_extended_attention_mask(
attention_mask, input_shape
)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(
cross_attn_head_mask, self.config.num_layers
)
present_key_value_states = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, (layer_module, past_key_value) in enumerate(
zip(self.block, past_key_values)
):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure that attention_mask is always on the same device as hidden_states
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if position_bias is not None:
position_bias = position_bias.to(hidden_states.device)
if layer_head_mask is not None:
layer_head_mask = layer_head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.forward,
hidden_states,
extended_attention_mask,
position_bias,
None,
None,
None,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
use_cache,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=extended_attention_mask,
position_bias=position_bias,
position_ids=position_ids,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, present_key_value_state = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
# append next layer key value states
if use_cache:
present_key_value_states = present_key_value_states + (
present_key_value_state,
)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
present_key_value_states,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return modeling_t5.BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
class DecoderOnlyT5Model(modeling_t5.T5ForConditionalGeneration):
def __init__(self, config: DecoderOnlyT5Config):
super(modeling_t5.T5ForConditionalGeneration, self).__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
assert (
self.config.num_layers == 0
), "Decoder only model cannot have encoder layers"
self.encoder = None
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = DecoderOnlyT5Stack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
def _tie_weights(self):
if not self.config.tie_word_embeddings:
return
if self.decoder:
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
@add_start_docstrings_to_model_forward(modeling_t5.T5_INPUTS_DOCSTRING)
@replace_return_docstrings(
output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
if input_ids is not None:
input_ids = input_ids.to(self.decoder.first_device)
if attention_mask is not None:
attention_mask = attention_mask.to(self.decoder.first_device)
# Decode
outputs = self.decoder(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
self.lm_head = self.lm_head.to(self.decoder.first_device)
sequence_output = sequence_output.to(self.lm_head.weight.device)
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
# move labels to correct device to enable PP
labels = labels.to(lm_logits.device)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)