Brandon Royal
commited on
Commit
·
044a024
1
Parent(s):
329b131
updated readme
Browse files
README.md
CHANGED
@@ -57,22 +57,6 @@ You can find fine-tuning notebooks under the [`examples/` directory](https://hug
|
|
57 |
* A script to perform SFT using FSDP on TPU devices
|
58 |
* A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset. You can also find the copy of the notebook [here](https://github.com/huggingface/notebooks/blob/main/peft/gemma_7b_english_quotes.ipynb).
|
59 |
|
60 |
-
#### Running the model on a CPU
|
61 |
-
|
62 |
-
|
63 |
-
```python
|
64 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
65 |
-
|
66 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
67 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
|
68 |
-
|
69 |
-
input_text = "Write me a poem about Machine Learning."
|
70 |
-
input_ids = tokenizer(input_text, return_tensors="pt")
|
71 |
-
|
72 |
-
outputs = model.generate(**input_ids)
|
73 |
-
print(tokenizer.decode(outputs[0]))
|
74 |
-
```
|
75 |
-
|
76 |
|
77 |
#### Running the model on a single / multi GPU
|
78 |
|
@@ -81,8 +65,8 @@ print(tokenizer.decode(outputs[0]))
|
|
81 |
# pip install accelerate
|
82 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
83 |
|
84 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
85 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto")
|
86 |
|
87 |
input_text = "Write me a poem about Machine Learning."
|
88 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
@@ -99,9 +83,10 @@ print(tokenizer.decode(outputs[0]))
|
|
99 |
```python
|
100 |
# pip install accelerate
|
101 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
102 |
|
103 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
104 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto", torch_dtype=torch.float16)
|
105 |
|
106 |
input_text = "Write me a poem about Machine Learning."
|
107 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
@@ -116,46 +101,8 @@ print(tokenizer.decode(outputs[0]))
|
|
116 |
# pip install accelerate
|
117 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
118 |
|
119 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
120 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", device_map="auto", torch_dtype=torch.bfloat16)
|
121 |
-
|
122 |
-
input_text = "Write me a poem about Machine Learning."
|
123 |
-
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
124 |
-
|
125 |
-
outputs = model.generate(**input_ids)
|
126 |
-
print(tokenizer.decode(outputs[0]))
|
127 |
-
```
|
128 |
-
|
129 |
-
#### Quantized Versions through `bitsandbytes`
|
130 |
-
|
131 |
-
* _Using 8-bit precision (int8)_
|
132 |
-
|
133 |
-
```python
|
134 |
-
# pip install bitsandbytes accelerate
|
135 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
136 |
-
|
137 |
-
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
138 |
-
|
139 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
140 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", quantization_config=quantization_config)
|
141 |
-
|
142 |
-
input_text = "Write me a poem about Machine Learning."
|
143 |
-
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
144 |
-
|
145 |
-
outputs = model.generate(**input_ids)
|
146 |
-
print(tokenizer.decode(outputs[0]))
|
147 |
-
```
|
148 |
-
|
149 |
-
* _Using 4-bit precision_
|
150 |
-
|
151 |
-
```python
|
152 |
-
# pip install bitsandbytes accelerate
|
153 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
154 |
-
|
155 |
-
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
156 |
-
|
157 |
-
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
158 |
-
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b", quantization_config=quantization_config)
|
159 |
|
160 |
input_text = "Write me a poem about Machine Learning."
|
161 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
57 |
* A script to perform SFT using FSDP on TPU devices
|
58 |
* A notebook that you can run on a free-tier Google Colab instance to perform SFT on English quotes dataset. You can also find the copy of the notebook [here](https://github.com/huggingface/notebooks/blob/main/peft/gemma_7b_english_quotes.ipynb).
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
#### Running the model on a single / multi GPU
|
62 |
|
|
|
65 |
# pip install accelerate
|
66 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
67 |
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b-AWQ")
|
69 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b-AWQ", device_map="auto")
|
70 |
|
71 |
input_text = "Write me a poem about Machine Learning."
|
72 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
83 |
```python
|
84 |
# pip install accelerate
|
85 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
86 |
+
import torch
|
87 |
|
88 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b-AWQ")
|
89 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b-AWQ", device_map="auto", torch_dtype=torch.float16)
|
90 |
|
91 |
input_text = "Write me a poem about Machine Learning."
|
92 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
101 |
# pip install accelerate
|
102 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
103 |
|
104 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b-AWQ")
|
105 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b-AWQ", device_map="auto", torch_dtype=torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
input_text = "Write me a poem about Machine Learning."
|
108 |
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|