--- language: - en - de - multilingual license: apache-2.0 tags: - translation datasets: - wmt14 --- # bert2bert_L-24_wmt_en_de EncoderDecoder model The model was introduced in [this paper](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn and first released in [this repository](https://tfhub.dev/google/bertseq2seq/bert24_en_de/1). The model is an encoder-decoder model that was initialized on the `bert-large` checkpoints for both the encoder and decoder and fine-tuned on English to German translation on the WMT dataset, which is linked above. Disclaimer: The model card has been written by the Hugging Face team. ## How to use You can use this model for translation, *e.g.* ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("google/bert2bert_L-24_wmt_en_de", pad_token="", eos_token="", bos_token="") model = AutoModelForSeq2SeqLM.from_pretrained("google/bert2bert_L-24_wmt_en_de") sentence = "Would you like to grab a coffee with me this week?" input_ids = tokenizer(sentence, return_tensors="pt", add_special_tokens=False).input_ids output_ids = model.generate(input_ids)[0] print(tokenizer.decode(output_ids, skip_special_tokens=True)) # should output # M�chten Sie diese Woche einen Kaffee mit mir schnappen?