--- library_name: transformers language: - en base_model: gokulsrinivasagan/distilbert_lda_5_v1_book tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_lda_5_v1_book_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.8923818946326985 - name: F1 type: f1 value: 0.8591772664012687 --- # distilbert_lda_5_v1_book_qqp This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_5_v1_book](https://huggingface.co/gokulsrinivasagan/distilbert_lda_5_v1_book) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.2694 - Accuracy: 0.8924 - F1: 0.8592 - Combined Score: 0.8758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.3639 | 1.0 | 1422 | 0.2923 | 0.8723 | 0.8247 | 0.8485 | | 0.2514 | 2.0 | 2844 | 0.2710 | 0.8812 | 0.8480 | 0.8646 | | 0.1851 | 3.0 | 4266 | 0.2694 | 0.8924 | 0.8592 | 0.8758 | | 0.134 | 4.0 | 5688 | 0.2956 | 0.8939 | 0.8562 | 0.8750 | | 0.0985 | 5.0 | 7110 | 0.3307 | 0.8945 | 0.8562 | 0.8753 | | 0.076 | 6.0 | 8532 | 0.3846 | 0.8946 | 0.8588 | 0.8767 | | 0.0609 | 7.0 | 9954 | 0.3922 | 0.8930 | 0.8558 | 0.8744 | | 0.0505 | 8.0 | 11376 | 0.4375 | 0.8933 | 0.8583 | 0.8758 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.2.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.1