--- library_name: transformers language: - en base_model: gokulsrinivasagan/distilbert_lda_100_v1_book tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: distilbert_lda_100_v1_book_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.8014167289188371 --- # distilbert_lda_100_v1_book_stsb This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_100_v1_book](https://huggingface.co/gokulsrinivasagan/distilbert_lda_100_v1_book) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.7981 - Pearson: 0.8060 - Spearmanr: 0.8014 - Combined Score: 0.8037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 3.1376 | 1.0 | 23 | 2.3444 | 0.1800 | 0.1657 | 0.1729 | | 1.571 | 2.0 | 46 | 1.4977 | 0.6469 | 0.6552 | 0.6511 | | 1.0298 | 3.0 | 69 | 0.9940 | 0.7483 | 0.7462 | 0.7472 | | 0.8795 | 4.0 | 92 | 1.0649 | 0.7622 | 0.7710 | 0.7666 | | 0.6951 | 5.0 | 115 | 1.5036 | 0.7508 | 0.7848 | 0.7678 | | 0.5558 | 6.0 | 138 | 0.9067 | 0.7878 | 0.7914 | 0.7896 | | 0.4306 | 7.0 | 161 | 0.8333 | 0.8051 | 0.8039 | 0.8045 | | 0.3592 | 8.0 | 184 | 0.9582 | 0.7967 | 0.7975 | 0.7971 | | 0.2847 | 9.0 | 207 | 1.0402 | 0.7929 | 0.7954 | 0.7942 | | 0.2689 | 10.0 | 230 | 0.7981 | 0.8060 | 0.8014 | 0.8037 | | 0.2368 | 11.0 | 253 | 0.8628 | 0.8101 | 0.8083 | 0.8092 | | 0.2088 | 12.0 | 276 | 1.0529 | 0.7991 | 0.8011 | 0.8001 | | 0.1912 | 13.0 | 299 | 0.8878 | 0.8011 | 0.8013 | 0.8012 | | 0.1618 | 14.0 | 322 | 0.8757 | 0.7959 | 0.7943 | 0.7951 | | 0.1557 | 15.0 | 345 | 0.8971 | 0.8001 | 0.7979 | 0.7990 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.2.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.1