File size: 2,246 Bytes
b66ec4d
 
7c61114
 
b66ec4d
 
 
7c61114
 
b66ec4d
 
 
 
7c61114
 
 
 
 
 
 
 
 
 
 
 
b66ec4d
 
 
 
 
 
 
7c61114
b66ec4d
7c61114
 
b66ec4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/distilbert_lda_100_v1_book
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: distilbert_lda_100_v1_book_rte
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE RTE
      type: glue
      args: rte
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5270758122743683
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert_lda_100_v1_book_rte

This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_100_v1_book](https://huggingface.co/gokulsrinivasagan/distilbert_lda_100_v1_book) on the GLUE RTE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6902
- Accuracy: 0.5271

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7006        | 1.0   | 10   | 0.6935          | 0.4765   |
| 0.6908        | 2.0   | 20   | 0.6908          | 0.5199   |
| 0.6809        | 3.0   | 30   | 0.6902          | 0.5271   |
| 0.6542        | 4.0   | 40   | 0.6959          | 0.5343   |
| 0.5813        | 5.0   | 50   | 0.7287          | 0.5560   |
| 0.4761        | 6.0   | 60   | 0.7502          | 0.5632   |
| 0.3513        | 7.0   | 70   | 0.8904          | 0.5776   |
| 0.2219        | 8.0   | 80   | 1.1421          | 0.5415   |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.2.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.1