--- library_name: transformers language: - en base_model: gokulsrinivasagan/distilbert_lda_100_v1_book tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: distilbert_lda_100_v1_book_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.8875092752906257 - name: F1 type: f1 value: 0.850019786307875 --- # distilbert_lda_100_v1_book_qqp This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_100_v1_book](https://huggingface.co/gokulsrinivasagan/distilbert_lda_100_v1_book) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.2688 - Accuracy: 0.8875 - F1: 0.8500 - Combined Score: 0.8688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.3709 | 1.0 | 1422 | 0.3001 | 0.8678 | 0.8193 | 0.8436 | | 0.2573 | 2.0 | 2844 | 0.2834 | 0.8762 | 0.8426 | 0.8594 | | 0.1922 | 3.0 | 4266 | 0.2688 | 0.8875 | 0.8500 | 0.8688 | | 0.1411 | 4.0 | 5688 | 0.3129 | 0.8910 | 0.8506 | 0.8708 | | 0.105 | 5.0 | 7110 | 0.3257 | 0.8932 | 0.8563 | 0.8748 | | 0.0794 | 6.0 | 8532 | 0.3696 | 0.8901 | 0.8546 | 0.8723 | | 0.0646 | 7.0 | 9954 | 0.3887 | 0.8889 | 0.8537 | 0.8713 | | 0.0528 | 8.0 | 11376 | 0.4293 | 0.8906 | 0.8565 | 0.8735 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.2.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.1