File size: 5,643 Bytes
d0db6a6 ad92954 d0db6a6 ad92954 d0db6a6 ad92954 d0db6a6 ad92954 d0db6a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- gokulsrinivasagan/processed_book_corpus-ld-100
metrics:
- accuracy
model-index:
- name: distilbert_lda_100_v1_book
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: gokulsrinivasagan/processed_book_corpus-ld-100
type: gokulsrinivasagan/processed_book_corpus-ld-100
metrics:
- name: Accuracy
type: accuracy
value: 0.7269170235533601
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_lda_100_v1_book
This model is a fine-tuned version of [](https://huggingface.co/) on the gokulsrinivasagan/processed_book_corpus-ld-100 dataset.
It achieves the following results on the evaluation set:
- Loss: 4.6471
- Accuracy: 0.7269
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 96
- eval_batch_size: 96
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:------:|:---------------:|:--------:|
| 9.8243 | 0.4215 | 10000 | 9.5492 | 0.1639 |
| 6.4155 | 0.8431 | 20000 | 6.0168 | 0.5575 |
| 5.9278 | 1.2646 | 30000 | 5.5919 | 0.6085 |
| 5.7301 | 1.6861 | 40000 | 5.4051 | 0.6304 |
| 5.5965 | 2.1077 | 50000 | 5.2807 | 0.6431 |
| 5.5012 | 2.5292 | 60000 | 5.1835 | 0.6540 |
| 5.4266 | 2.9507 | 70000 | 5.1245 | 0.6611 |
| 5.3773 | 3.3723 | 80000 | 5.0742 | 0.6676 |
| 5.3364 | 3.7938 | 90000 | 5.0321 | 0.6726 |
| 5.2973 | 4.2153 | 100000 | 5.0044 | 0.6767 |
| 5.2724 | 4.6369 | 110000 | 4.9772 | 0.6799 |
| 5.2442 | 5.0584 | 120000 | 4.9517 | 0.6836 |
| 5.2231 | 5.4799 | 130000 | 4.9291 | 0.6863 |
| 5.2074 | 5.9014 | 140000 | 4.9105 | 0.6888 |
| 5.1812 | 6.3230 | 150000 | 4.8956 | 0.6911 |
| 5.1733 | 6.7445 | 160000 | 4.8813 | 0.6934 |
| 5.147 | 7.1660 | 170000 | 4.8666 | 0.6953 |
| 5.1368 | 7.5876 | 180000 | 4.8567 | 0.6967 |
| 5.1244 | 8.0091 | 190000 | 4.8440 | 0.6982 |
| 5.1142 | 8.4306 | 200000 | 4.8315 | 0.6998 |
| 5.1017 | 8.8522 | 210000 | 4.8245 | 0.7013 |
| 5.0955 | 9.2737 | 220000 | 4.8129 | 0.7025 |
| 5.0784 | 9.6952 | 230000 | 4.8042 | 0.7039 |
| 5.0662 | 10.1168 | 240000 | 4.7974 | 0.7053 |
| 5.067 | 10.5383 | 250000 | 4.7871 | 0.7062 |
| 5.0545 | 10.9598 | 260000 | 4.7792 | 0.7074 |
| 5.0461 | 11.3814 | 270000 | 4.7762 | 0.7082 |
| 5.0456 | 11.8029 | 280000 | 4.7663 | 0.7093 |
| 5.0294 | 12.2244 | 290000 | 4.7599 | 0.7103 |
| 5.0258 | 12.6460 | 300000 | 4.7528 | 0.7113 |
| 5.0149 | 13.0675 | 310000 | 4.7464 | 0.7123 |
| 5.0114 | 13.4890 | 320000 | 4.7420 | 0.7131 |
| 5.0086 | 13.9106 | 330000 | 4.7378 | 0.7137 |
| 5.004 | 14.3321 | 340000 | 4.7310 | 0.7147 |
| 4.9941 | 14.7536 | 350000 | 4.7263 | 0.7152 |
| 4.9902 | 15.1751 | 360000 | 4.7222 | 0.7157 |
| 4.9867 | 15.5967 | 370000 | 4.7158 | 0.7168 |
| 4.9796 | 16.0182 | 380000 | 4.7116 | 0.7175 |
| 4.9751 | 16.4397 | 390000 | 4.7051 | 0.7180 |
| 4.9683 | 16.8613 | 400000 | 4.7038 | 0.7184 |
| 4.967 | 17.2828 | 410000 | 4.6955 | 0.7196 |
| 4.961 | 17.7043 | 420000 | 4.6947 | 0.7200 |
| 4.953 | 18.1259 | 430000 | 4.6910 | 0.7204 |
| 4.9491 | 18.5474 | 440000 | 4.6884 | 0.7208 |
| 4.9485 | 18.9689 | 450000 | 4.6825 | 0.7217 |
| 4.9439 | 19.3905 | 460000 | 4.6790 | 0.7222 |
| 4.9417 | 19.8120 | 470000 | 4.6757 | 0.7226 |
| 4.9334 | 20.2335 | 480000 | 4.6713 | 0.7233 |
| 4.929 | 20.6551 | 490000 | 4.6686 | 0.7238 |
| 4.925 | 21.0766 | 500000 | 4.6645 | 0.7242 |
| 4.9207 | 21.4981 | 510000 | 4.6618 | 0.7246 |
| 4.9177 | 21.9197 | 520000 | 4.6599 | 0.7250 |
| 4.9191 | 22.3412 | 530000 | 4.6584 | 0.7252 |
| 4.9138 | 22.7627 | 540000 | 4.6577 | 0.7255 |
| 4.9139 | 23.1843 | 550000 | 4.6533 | 0.7259 |
| 4.9098 | 23.6058 | 560000 | 4.6508 | 0.7264 |
| 4.9063 | 24.0273 | 570000 | 4.6497 | 0.7265 |
| 4.9048 | 24.4488 | 580000 | 4.6457 | 0.7271 |
| 4.9011 | 24.8704 | 590000 | 4.6463 | 0.7270 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
|