File size: 5,643 Bytes
d0db6a6
 
 
 
ad92954
 
d0db6a6
 
 
 
ad92954
 
 
 
 
 
 
 
 
 
 
d0db6a6
 
 
 
 
 
 
ad92954
d0db6a6
ad92954
 
d0db6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
library_name: transformers
tags:
- generated_from_trainer
datasets:
- gokulsrinivasagan/processed_book_corpus-ld-100
metrics:
- accuracy
model-index:
- name: distilbert_lda_100_v1_book
  results:
  - task:
      name: Masked Language Modeling
      type: fill-mask
    dataset:
      name: gokulsrinivasagan/processed_book_corpus-ld-100
      type: gokulsrinivasagan/processed_book_corpus-ld-100
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7269170235533601
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert_lda_100_v1_book

This model is a fine-tuned version of [](https://huggingface.co/) on the gokulsrinivasagan/processed_book_corpus-ld-100 dataset.
It achieves the following results on the evaluation set:
- Loss: 4.6471
- Accuracy: 0.7269

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 96
- eval_batch_size: 96
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 25

### Training results

| Training Loss | Epoch   | Step   | Validation Loss | Accuracy |
|:-------------:|:-------:|:------:|:---------------:|:--------:|
| 9.8243        | 0.4215  | 10000  | 9.5492          | 0.1639   |
| 6.4155        | 0.8431  | 20000  | 6.0168          | 0.5575   |
| 5.9278        | 1.2646  | 30000  | 5.5919          | 0.6085   |
| 5.7301        | 1.6861  | 40000  | 5.4051          | 0.6304   |
| 5.5965        | 2.1077  | 50000  | 5.2807          | 0.6431   |
| 5.5012        | 2.5292  | 60000  | 5.1835          | 0.6540   |
| 5.4266        | 2.9507  | 70000  | 5.1245          | 0.6611   |
| 5.3773        | 3.3723  | 80000  | 5.0742          | 0.6676   |
| 5.3364        | 3.7938  | 90000  | 5.0321          | 0.6726   |
| 5.2973        | 4.2153  | 100000 | 5.0044          | 0.6767   |
| 5.2724        | 4.6369  | 110000 | 4.9772          | 0.6799   |
| 5.2442        | 5.0584  | 120000 | 4.9517          | 0.6836   |
| 5.2231        | 5.4799  | 130000 | 4.9291          | 0.6863   |
| 5.2074        | 5.9014  | 140000 | 4.9105          | 0.6888   |
| 5.1812        | 6.3230  | 150000 | 4.8956          | 0.6911   |
| 5.1733        | 6.7445  | 160000 | 4.8813          | 0.6934   |
| 5.147         | 7.1660  | 170000 | 4.8666          | 0.6953   |
| 5.1368        | 7.5876  | 180000 | 4.8567          | 0.6967   |
| 5.1244        | 8.0091  | 190000 | 4.8440          | 0.6982   |
| 5.1142        | 8.4306  | 200000 | 4.8315          | 0.6998   |
| 5.1017        | 8.8522  | 210000 | 4.8245          | 0.7013   |
| 5.0955        | 9.2737  | 220000 | 4.8129          | 0.7025   |
| 5.0784        | 9.6952  | 230000 | 4.8042          | 0.7039   |
| 5.0662        | 10.1168 | 240000 | 4.7974          | 0.7053   |
| 5.067         | 10.5383 | 250000 | 4.7871          | 0.7062   |
| 5.0545        | 10.9598 | 260000 | 4.7792          | 0.7074   |
| 5.0461        | 11.3814 | 270000 | 4.7762          | 0.7082   |
| 5.0456        | 11.8029 | 280000 | 4.7663          | 0.7093   |
| 5.0294        | 12.2244 | 290000 | 4.7599          | 0.7103   |
| 5.0258        | 12.6460 | 300000 | 4.7528          | 0.7113   |
| 5.0149        | 13.0675 | 310000 | 4.7464          | 0.7123   |
| 5.0114        | 13.4890 | 320000 | 4.7420          | 0.7131   |
| 5.0086        | 13.9106 | 330000 | 4.7378          | 0.7137   |
| 5.004         | 14.3321 | 340000 | 4.7310          | 0.7147   |
| 4.9941        | 14.7536 | 350000 | 4.7263          | 0.7152   |
| 4.9902        | 15.1751 | 360000 | 4.7222          | 0.7157   |
| 4.9867        | 15.5967 | 370000 | 4.7158          | 0.7168   |
| 4.9796        | 16.0182 | 380000 | 4.7116          | 0.7175   |
| 4.9751        | 16.4397 | 390000 | 4.7051          | 0.7180   |
| 4.9683        | 16.8613 | 400000 | 4.7038          | 0.7184   |
| 4.967         | 17.2828 | 410000 | 4.6955          | 0.7196   |
| 4.961         | 17.7043 | 420000 | 4.6947          | 0.7200   |
| 4.953         | 18.1259 | 430000 | 4.6910          | 0.7204   |
| 4.9491        | 18.5474 | 440000 | 4.6884          | 0.7208   |
| 4.9485        | 18.9689 | 450000 | 4.6825          | 0.7217   |
| 4.9439        | 19.3905 | 460000 | 4.6790          | 0.7222   |
| 4.9417        | 19.8120 | 470000 | 4.6757          | 0.7226   |
| 4.9334        | 20.2335 | 480000 | 4.6713          | 0.7233   |
| 4.929         | 20.6551 | 490000 | 4.6686          | 0.7238   |
| 4.925         | 21.0766 | 500000 | 4.6645          | 0.7242   |
| 4.9207        | 21.4981 | 510000 | 4.6618          | 0.7246   |
| 4.9177        | 21.9197 | 520000 | 4.6599          | 0.7250   |
| 4.9191        | 22.3412 | 530000 | 4.6584          | 0.7252   |
| 4.9138        | 22.7627 | 540000 | 4.6577          | 0.7255   |
| 4.9139        | 23.1843 | 550000 | 4.6533          | 0.7259   |
| 4.9098        | 23.6058 | 560000 | 4.6508          | 0.7264   |
| 4.9063        | 24.0273 | 570000 | 4.6497          | 0.7265   |
| 4.9048        | 24.4488 | 580000 | 4.6457          | 0.7271   |
| 4.9011        | 24.8704 | 590000 | 4.6463          | 0.7270   |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3