File size: 5,260 Bytes
d0db6a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert_lda_100_v1_book
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_lda_100_v1_book
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.6463
- Accuracy: 0.7270
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 96
- eval_batch_size: 96
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:------:|:---------------:|:--------:|
| 9.8243 | 0.4215 | 10000 | 9.5492 | 0.1639 |
| 6.4155 | 0.8431 | 20000 | 6.0168 | 0.5575 |
| 5.9278 | 1.2646 | 30000 | 5.5919 | 0.6085 |
| 5.7301 | 1.6861 | 40000 | 5.4051 | 0.6304 |
| 5.5965 | 2.1077 | 50000 | 5.2807 | 0.6431 |
| 5.5012 | 2.5292 | 60000 | 5.1835 | 0.6540 |
| 5.4266 | 2.9507 | 70000 | 5.1245 | 0.6611 |
| 5.3773 | 3.3723 | 80000 | 5.0742 | 0.6676 |
| 5.3364 | 3.7938 | 90000 | 5.0321 | 0.6726 |
| 5.2973 | 4.2153 | 100000 | 5.0044 | 0.6767 |
| 5.2724 | 4.6369 | 110000 | 4.9772 | 0.6799 |
| 5.2442 | 5.0584 | 120000 | 4.9517 | 0.6836 |
| 5.2231 | 5.4799 | 130000 | 4.9291 | 0.6863 |
| 5.2074 | 5.9014 | 140000 | 4.9105 | 0.6888 |
| 5.1812 | 6.3230 | 150000 | 4.8956 | 0.6911 |
| 5.1733 | 6.7445 | 160000 | 4.8813 | 0.6934 |
| 5.147 | 7.1660 | 170000 | 4.8666 | 0.6953 |
| 5.1368 | 7.5876 | 180000 | 4.8567 | 0.6967 |
| 5.1244 | 8.0091 | 190000 | 4.8440 | 0.6982 |
| 5.1142 | 8.4306 | 200000 | 4.8315 | 0.6998 |
| 5.1017 | 8.8522 | 210000 | 4.8245 | 0.7013 |
| 5.0955 | 9.2737 | 220000 | 4.8129 | 0.7025 |
| 5.0784 | 9.6952 | 230000 | 4.8042 | 0.7039 |
| 5.0662 | 10.1168 | 240000 | 4.7974 | 0.7053 |
| 5.067 | 10.5383 | 250000 | 4.7871 | 0.7062 |
| 5.0545 | 10.9598 | 260000 | 4.7792 | 0.7074 |
| 5.0461 | 11.3814 | 270000 | 4.7762 | 0.7082 |
| 5.0456 | 11.8029 | 280000 | 4.7663 | 0.7093 |
| 5.0294 | 12.2244 | 290000 | 4.7599 | 0.7103 |
| 5.0258 | 12.6460 | 300000 | 4.7528 | 0.7113 |
| 5.0149 | 13.0675 | 310000 | 4.7464 | 0.7123 |
| 5.0114 | 13.4890 | 320000 | 4.7420 | 0.7131 |
| 5.0086 | 13.9106 | 330000 | 4.7378 | 0.7137 |
| 5.004 | 14.3321 | 340000 | 4.7310 | 0.7147 |
| 4.9941 | 14.7536 | 350000 | 4.7263 | 0.7152 |
| 4.9902 | 15.1751 | 360000 | 4.7222 | 0.7157 |
| 4.9867 | 15.5967 | 370000 | 4.7158 | 0.7168 |
| 4.9796 | 16.0182 | 380000 | 4.7116 | 0.7175 |
| 4.9751 | 16.4397 | 390000 | 4.7051 | 0.7180 |
| 4.9683 | 16.8613 | 400000 | 4.7038 | 0.7184 |
| 4.967 | 17.2828 | 410000 | 4.6955 | 0.7196 |
| 4.961 | 17.7043 | 420000 | 4.6947 | 0.7200 |
| 4.953 | 18.1259 | 430000 | 4.6910 | 0.7204 |
| 4.9491 | 18.5474 | 440000 | 4.6884 | 0.7208 |
| 4.9485 | 18.9689 | 450000 | 4.6825 | 0.7217 |
| 4.9439 | 19.3905 | 460000 | 4.6790 | 0.7222 |
| 4.9417 | 19.8120 | 470000 | 4.6757 | 0.7226 |
| 4.9334 | 20.2335 | 480000 | 4.6713 | 0.7233 |
| 4.929 | 20.6551 | 490000 | 4.6686 | 0.7238 |
| 4.925 | 21.0766 | 500000 | 4.6645 | 0.7242 |
| 4.9207 | 21.4981 | 510000 | 4.6618 | 0.7246 |
| 4.9177 | 21.9197 | 520000 | 4.6599 | 0.7250 |
| 4.9191 | 22.3412 | 530000 | 4.6584 | 0.7252 |
| 4.9138 | 22.7627 | 540000 | 4.6577 | 0.7255 |
| 4.9139 | 23.1843 | 550000 | 4.6533 | 0.7259 |
| 4.9098 | 23.6058 | 560000 | 4.6508 | 0.7264 |
| 4.9063 | 24.0273 | 570000 | 4.6497 | 0.7265 |
| 4.9048 | 24.4488 | 580000 | 4.6457 | 0.7271 |
| 4.9011 | 24.8704 | 590000 | 4.6463 | 0.7270 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
|