--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_5_v1_book tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_tiny_lda_5_v1_book_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.5523465703971119 --- # bert_tiny_lda_5_v1_book_rte This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_5_v1_book](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_5_v1_book) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6891 - Accuracy: 0.5523 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7089 | 1.0 | 10 | 0.6937 | 0.4838 | | 0.6904 | 2.0 | 20 | 0.6900 | 0.5307 | | 0.6812 | 3.0 | 30 | 0.6891 | 0.5523 | | 0.6636 | 4.0 | 40 | 0.6905 | 0.5776 | | 0.628 | 5.0 | 50 | 0.7492 | 0.5162 | | 0.583 | 6.0 | 60 | 0.7529 | 0.5415 | | 0.4924 | 7.0 | 70 | 0.8328 | 0.5090 | | 0.3942 | 8.0 | 80 | 0.9866 | 0.5307 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3