gokulsrinivasagan
commited on
Model save
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: bert_tiny_lda_5_v1_book
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# bert_tiny_lda_5_v1_book
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.8586
|
20 |
+
- Accuracy: 0.6859
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0001
|
40 |
+
- train_batch_size: 160
|
41 |
+
- eval_batch_size: 160
|
42 |
+
- seed: 10
|
43 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- lr_scheduler_warmup_steps: 10000
|
46 |
+
- num_epochs: 25
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-------:|:------:|:---------------:|:--------:|
|
52 |
+
| 7.2508 | 0.7025 | 10000 | 7.0913 | 0.1639 |
|
53 |
+
| 5.6868 | 1.4051 | 20000 | 5.0071 | 0.4074 |
|
54 |
+
| 4.0487 | 2.1076 | 30000 | 3.6967 | 0.5617 |
|
55 |
+
| 3.7657 | 2.8102 | 40000 | 3.4422 | 0.5989 |
|
56 |
+
| 3.6336 | 3.5127 | 50000 | 3.3142 | 0.6176 |
|
57 |
+
| 3.5449 | 4.2153 | 60000 | 3.2372 | 0.6291 |
|
58 |
+
| 3.4893 | 4.9178 | 70000 | 3.1788 | 0.6376 |
|
59 |
+
| 3.4397 | 5.6203 | 80000 | 3.1367 | 0.6442 |
|
60 |
+
| 3.4066 | 6.3229 | 90000 | 3.1054 | 0.6491 |
|
61 |
+
| 3.3758 | 7.0254 | 100000 | 3.0734 | 0.6534 |
|
62 |
+
| 3.3548 | 7.7280 | 110000 | 3.0504 | 0.6571 |
|
63 |
+
| 3.3302 | 8.4305 | 120000 | 3.0304 | 0.6599 |
|
64 |
+
| 3.3087 | 9.1331 | 130000 | 3.0157 | 0.6620 |
|
65 |
+
| 3.2942 | 9.8356 | 140000 | 2.9982 | 0.6654 |
|
66 |
+
| 3.2799 | 10.5381 | 150000 | 2.9831 | 0.6672 |
|
67 |
+
| 3.271 | 11.2407 | 160000 | 2.9750 | 0.6687 |
|
68 |
+
| 3.2545 | 11.9432 | 170000 | 2.9624 | 0.6703 |
|
69 |
+
| 3.2444 | 12.6458 | 180000 | 2.9493 | 0.6723 |
|
70 |
+
| 3.2336 | 13.3483 | 190000 | 2.9428 | 0.6731 |
|
71 |
+
| 3.2254 | 14.0509 | 200000 | 2.9316 | 0.6746 |
|
72 |
+
| 3.2143 | 14.7534 | 210000 | 2.9231 | 0.6759 |
|
73 |
+
| 3.2058 | 15.4560 | 220000 | 2.9154 | 0.6772 |
|
74 |
+
| 3.2014 | 16.1585 | 230000 | 2.9095 | 0.6780 |
|
75 |
+
| 3.1923 | 16.8610 | 240000 | 2.9047 | 0.6788 |
|
76 |
+
| 3.1846 | 17.5636 | 250000 | 2.8982 | 0.6797 |
|
77 |
+
| 3.1797 | 18.2661 | 260000 | 2.8922 | 0.6805 |
|
78 |
+
| 3.1768 | 18.9687 | 270000 | 2.8886 | 0.6813 |
|
79 |
+
| 3.1696 | 19.6712 | 280000 | 2.8828 | 0.6822 |
|
80 |
+
| 3.1656 | 20.3738 | 290000 | 2.8787 | 0.6826 |
|
81 |
+
| 3.1581 | 21.0763 | 300000 | 2.8756 | 0.6834 |
|
82 |
+
| 3.1566 | 21.7788 | 310000 | 2.8690 | 0.6842 |
|
83 |
+
| 3.1508 | 22.4814 | 320000 | 2.8671 | 0.6845 |
|
84 |
+
| 3.1496 | 23.1839 | 330000 | 2.8648 | 0.6849 |
|
85 |
+
| 3.1475 | 23.8865 | 340000 | 2.8612 | 0.6853 |
|
86 |
+
| 3.1459 | 24.5890 | 350000 | 2.8586 | 0.6859 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.46.3
|
92 |
+
- Pytorch 2.2.1+cu118
|
93 |
+
- Datasets 2.17.0
|
94 |
+
- Tokenizers 0.20.3
|
logs/events.out.tfevents.1733701778.ki-g0008.3821455.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e77e1a51f5d87f844703c1d8296ec787f7f00b1f4311654412334682eb5cc479
|
3 |
+
size 169456
|