--- library_name: transformers tags: - generated_from_trainer datasets: - gokulsrinivasagan/processed_book_corpus-ld-20 metrics: - accuracy model-index: - name: bert_tiny_lda_20_v1_book results: - task: name: Masked Language Modeling type: fill-mask dataset: name: gokulsrinivasagan/processed_book_corpus-ld-20 type: gokulsrinivasagan/processed_book_corpus-ld-20 metrics: - name: Accuracy type: accuracy value: 0.6793461178036027 --- # bert_tiny_lda_20_v1_book This model is a fine-tuned version of [](https://huggingface.co/) on the gokulsrinivasagan/processed_book_corpus-ld-20 dataset. It achieves the following results on the evaluation set: - Loss: 3.8712 - Accuracy: 0.6793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 160 - eval_batch_size: 160 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10000 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:------:|:---------------:|:--------:| | 8.6049 | 0.7025 | 10000 | 8.4377 | 0.1653 | | 5.6593 | 1.4051 | 20000 | 5.2243 | 0.5031 | | 5.1606 | 2.1076 | 30000 | 4.7778 | 0.5589 | | 4.9169 | 2.8102 | 40000 | 4.5539 | 0.5885 | | 4.7607 | 3.5127 | 50000 | 4.4085 | 0.6088 | | 4.6405 | 4.2153 | 60000 | 4.3027 | 0.6216 | | 4.5578 | 4.9178 | 70000 | 4.2156 | 0.6307 | | 4.496 | 5.6203 | 80000 | 4.1619 | 0.6375 | | 4.457 | 6.3229 | 90000 | 4.1256 | 0.6425 | | 4.4199 | 7.0254 | 100000 | 4.0918 | 0.6468 | | 4.3953 | 7.7280 | 110000 | 4.0677 | 0.6504 | | 4.3703 | 8.4305 | 120000 | 4.0441 | 0.6538 | | 4.3437 | 9.1331 | 130000 | 4.0295 | 0.6560 | | 4.3295 | 9.8356 | 140000 | 4.0084 | 0.6594 | | 4.3125 | 10.5381 | 150000 | 3.9955 | 0.6612 | | 4.3048 | 11.2407 | 160000 | 3.9842 | 0.6627 | | 4.2863 | 11.9432 | 170000 | 3.9727 | 0.6645 | | 4.276 | 12.6458 | 180000 | 3.9592 | 0.6663 | | 4.2651 | 13.3483 | 190000 | 3.9543 | 0.6669 | | 4.2573 | 14.0509 | 200000 | 3.9438 | 0.6683 | | 4.247 | 14.7534 | 210000 | 3.9343 | 0.6699 | | 4.2387 | 15.4560 | 220000 | 3.9274 | 0.6712 | | 4.2331 | 16.1585 | 230000 | 3.9226 | 0.6718 | | 4.2238 | 16.8610 | 240000 | 3.9161 | 0.6727 | | 4.2171 | 17.5636 | 250000 | 3.9106 | 0.6735 | | 4.2098 | 18.2661 | 260000 | 3.9046 | 0.6740 | | 4.2083 | 18.9687 | 270000 | 3.9001 | 0.6749 | | 4.1991 | 19.6712 | 280000 | 3.8949 | 0.6759 | | 4.1961 | 20.3738 | 290000 | 3.8903 | 0.6766 | | 4.1893 | 21.0763 | 300000 | 3.8864 | 0.6772 | | 4.1866 | 21.7788 | 310000 | 3.8808 | 0.6779 | | 4.181 | 22.4814 | 320000 | 3.8782 | 0.6784 | | 4.18 | 23.1839 | 330000 | 3.8763 | 0.6785 | | 4.1771 | 23.8865 | 340000 | 3.8731 | 0.6790 | | 4.1765 | 24.5890 | 350000 | 3.8704 | 0.6795 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3