File size: 5,751 Bytes
5a29e56
 
 
 
 
 
05535cc
 
5a29e56
 
 
 
05535cc
 
 
 
 
 
 
 
 
 
 
5a29e56
 
 
 
 
 
 
05535cc
5a29e56
05535cc
 
5a29e56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- gokulsrinivasagan/processed_book_corpus_cleaned
metrics:
- accuracy
model-index:
- name: bert_base_train_book
  results:
  - task:
      name: Masked Language Modeling
      type: fill-mask
    dataset:
      name: gokulsrinivasagan/processed_book_corpus_cleaned
      type: gokulsrinivasagan/processed_book_corpus_cleaned
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7530519758192171
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_base_train_book

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the gokulsrinivasagan/processed_book_corpus_cleaned dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0775
- Accuracy: 0.7531

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 96
- eval_batch_size: 96
- seed: 10
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 25

### Training results

| Training Loss | Epoch   | Step   | Validation Loss | Accuracy |
|:-------------:|:-------:|:------:|:---------------:|:--------:|
| 5.6277        | 0.4215  | 10000  | 5.4679          | 0.1648   |
| 5.5308        | 0.8431  | 20000  | 5.3921          | 0.1656   |
| 5.4819        | 1.2646  | 30000  | 5.3559          | 0.1668   |
| 5.4576        | 1.6861  | 40000  | 5.3327          | 0.1669   |
| 5.434         | 2.1077  | 50000  | 5.3193          | 0.1671   |
| 5.423         | 2.5292  | 60000  | 5.3064          | 0.1676   |
| 5.4078        | 2.9507  | 70000  | 5.3011          | 0.1670   |
| 5.3996        | 3.3723  | 80000  | 5.2891          | 0.1675   |
| 5.3864        | 3.7938  | 90000  | 5.2806          | 0.1672   |
| 5.3883        | 4.2153  | 100000 | 5.2894          | 0.1641   |
| 5.3743        | 4.6369  | 110000 | 5.2662          | 0.1678   |
| 5.3614        | 5.0584  | 120000 | 5.2495          | 0.1677   |
| 2.7786        | 5.4799  | 130000 | 2.4132          | 0.5314   |
| 2.191         | 5.9014  | 140000 | 1.8931          | 0.6135   |
| 1.997         | 6.3230  | 150000 | 1.7234          | 0.6414   |
| 1.8894        | 6.7445  | 160000 | 1.6208          | 0.6582   |
| 1.801         | 7.1660  | 170000 | 1.5466          | 0.6709   |
| 1.7429        | 7.5876  | 180000 | 1.4959          | 0.6795   |
| 1.6988        | 8.0091  | 190000 | 1.4521          | 0.6867   |
| 1.6587        | 8.4306  | 200000 | 1.4160          | 0.6930   |
| 1.6247        | 8.8522  | 210000 | 1.3884          | 0.6977   |
| 1.5996        | 9.2737  | 220000 | 1.3623          | 0.7023   |
| 1.5686        | 9.6952  | 230000 | 1.3387          | 0.7062   |
| 1.5445        | 10.1168 | 240000 | 1.3201          | 0.7099   |
| 1.5316        | 10.5383 | 250000 | 1.3002          | 0.7128   |
| 1.51          | 10.9598 | 260000 | 1.2850          | 0.7156   |
| 1.4938        | 11.3814 | 270000 | 1.2728          | 0.7178   |
| 1.4864        | 11.8029 | 280000 | 1.2574          | 0.7205   |
| 1.4641        | 12.2244 | 290000 | 1.2453          | 0.7228   |
| 1.4549        | 12.6460 | 300000 | 1.2324          | 0.7250   |
| 1.4394        | 13.0675 | 310000 | 1.2212          | 0.7270   |
| 1.4298        | 13.4890 | 320000 | 1.2135          | 0.7284   |
| 1.4227        | 13.9106 | 330000 | 1.2044          | 0.7299   |
| 1.414         | 14.3321 | 340000 | 1.1946          | 0.7319   |
| 1.4028        | 14.7536 | 350000 | 1.1855          | 0.7333   |
| 1.3929        | 15.1751 | 360000 | 1.1794          | 0.7344   |
| 1.3863        | 15.5967 | 370000 | 1.1696          | 0.7360   |
| 1.3762        | 16.0182 | 380000 | 1.1627          | 0.7372   |
| 1.3697        | 16.4397 | 390000 | 1.1562          | 0.7387   |
| 1.36          | 16.8613 | 400000 | 1.1513          | 0.7395   |
| 1.3566        | 17.2828 | 410000 | 1.1425          | 0.7411   |
| 1.3482        | 17.7043 | 420000 | 1.1388          | 0.7417   |
| 1.3398        | 18.1259 | 430000 | 1.1331          | 0.7430   |
| 1.3332        | 18.5474 | 440000 | 1.1295          | 0.7436   |
| 1.3316        | 18.9689 | 450000 | 1.1221          | 0.7448   |
| 1.3235        | 19.3905 | 460000 | 1.1177          | 0.7457   |
| 1.321         | 19.8120 | 470000 | 1.1127          | 0.7464   |
| 1.3123        | 20.2335 | 480000 | 1.1087          | 0.7474   |
| 1.3069        | 20.6551 | 490000 | 1.1046          | 0.7480   |
| 1.3016        | 21.0766 | 500000 | 1.0994          | 0.7486   |
| 1.2977        | 21.4981 | 510000 | 1.0952          | 0.7497   |
| 1.2929        | 21.9197 | 520000 | 1.0932          | 0.7500   |
| 1.2924        | 22.3412 | 530000 | 1.0899          | 0.7505   |
| 1.2862        | 22.7627 | 540000 | 1.0887          | 0.7510   |
| 1.2853        | 23.1843 | 550000 | 1.0847          | 0.7517   |
| 1.2827        | 23.6058 | 560000 | 1.0813          | 0.7523   |
| 1.2787        | 24.0273 | 570000 | 1.0805          | 0.7524   |
| 1.276         | 24.4488 | 580000 | 1.0765          | 0.7532   |
| 1.2732        | 24.8704 | 590000 | 1.0770          | 0.7530   |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.2.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.1