File size: 5,751 Bytes
5a29e56 05535cc 5a29e56 05535cc 5a29e56 05535cc 5a29e56 05535cc 5a29e56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
---
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- gokulsrinivasagan/processed_book_corpus_cleaned
metrics:
- accuracy
model-index:
- name: bert_base_train_book
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: gokulsrinivasagan/processed_book_corpus_cleaned
type: gokulsrinivasagan/processed_book_corpus_cleaned
metrics:
- name: Accuracy
type: accuracy
value: 0.7530519758192171
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_base_train_book
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the gokulsrinivasagan/processed_book_corpus_cleaned dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0775
- Accuracy: 0.7531
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 96
- eval_batch_size: 96
- seed: 10
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10000
- num_epochs: 25
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:------:|:---------------:|:--------:|
| 5.6277 | 0.4215 | 10000 | 5.4679 | 0.1648 |
| 5.5308 | 0.8431 | 20000 | 5.3921 | 0.1656 |
| 5.4819 | 1.2646 | 30000 | 5.3559 | 0.1668 |
| 5.4576 | 1.6861 | 40000 | 5.3327 | 0.1669 |
| 5.434 | 2.1077 | 50000 | 5.3193 | 0.1671 |
| 5.423 | 2.5292 | 60000 | 5.3064 | 0.1676 |
| 5.4078 | 2.9507 | 70000 | 5.3011 | 0.1670 |
| 5.3996 | 3.3723 | 80000 | 5.2891 | 0.1675 |
| 5.3864 | 3.7938 | 90000 | 5.2806 | 0.1672 |
| 5.3883 | 4.2153 | 100000 | 5.2894 | 0.1641 |
| 5.3743 | 4.6369 | 110000 | 5.2662 | 0.1678 |
| 5.3614 | 5.0584 | 120000 | 5.2495 | 0.1677 |
| 2.7786 | 5.4799 | 130000 | 2.4132 | 0.5314 |
| 2.191 | 5.9014 | 140000 | 1.8931 | 0.6135 |
| 1.997 | 6.3230 | 150000 | 1.7234 | 0.6414 |
| 1.8894 | 6.7445 | 160000 | 1.6208 | 0.6582 |
| 1.801 | 7.1660 | 170000 | 1.5466 | 0.6709 |
| 1.7429 | 7.5876 | 180000 | 1.4959 | 0.6795 |
| 1.6988 | 8.0091 | 190000 | 1.4521 | 0.6867 |
| 1.6587 | 8.4306 | 200000 | 1.4160 | 0.6930 |
| 1.6247 | 8.8522 | 210000 | 1.3884 | 0.6977 |
| 1.5996 | 9.2737 | 220000 | 1.3623 | 0.7023 |
| 1.5686 | 9.6952 | 230000 | 1.3387 | 0.7062 |
| 1.5445 | 10.1168 | 240000 | 1.3201 | 0.7099 |
| 1.5316 | 10.5383 | 250000 | 1.3002 | 0.7128 |
| 1.51 | 10.9598 | 260000 | 1.2850 | 0.7156 |
| 1.4938 | 11.3814 | 270000 | 1.2728 | 0.7178 |
| 1.4864 | 11.8029 | 280000 | 1.2574 | 0.7205 |
| 1.4641 | 12.2244 | 290000 | 1.2453 | 0.7228 |
| 1.4549 | 12.6460 | 300000 | 1.2324 | 0.7250 |
| 1.4394 | 13.0675 | 310000 | 1.2212 | 0.7270 |
| 1.4298 | 13.4890 | 320000 | 1.2135 | 0.7284 |
| 1.4227 | 13.9106 | 330000 | 1.2044 | 0.7299 |
| 1.414 | 14.3321 | 340000 | 1.1946 | 0.7319 |
| 1.4028 | 14.7536 | 350000 | 1.1855 | 0.7333 |
| 1.3929 | 15.1751 | 360000 | 1.1794 | 0.7344 |
| 1.3863 | 15.5967 | 370000 | 1.1696 | 0.7360 |
| 1.3762 | 16.0182 | 380000 | 1.1627 | 0.7372 |
| 1.3697 | 16.4397 | 390000 | 1.1562 | 0.7387 |
| 1.36 | 16.8613 | 400000 | 1.1513 | 0.7395 |
| 1.3566 | 17.2828 | 410000 | 1.1425 | 0.7411 |
| 1.3482 | 17.7043 | 420000 | 1.1388 | 0.7417 |
| 1.3398 | 18.1259 | 430000 | 1.1331 | 0.7430 |
| 1.3332 | 18.5474 | 440000 | 1.1295 | 0.7436 |
| 1.3316 | 18.9689 | 450000 | 1.1221 | 0.7448 |
| 1.3235 | 19.3905 | 460000 | 1.1177 | 0.7457 |
| 1.321 | 19.8120 | 470000 | 1.1127 | 0.7464 |
| 1.3123 | 20.2335 | 480000 | 1.1087 | 0.7474 |
| 1.3069 | 20.6551 | 490000 | 1.1046 | 0.7480 |
| 1.3016 | 21.0766 | 500000 | 1.0994 | 0.7486 |
| 1.2977 | 21.4981 | 510000 | 1.0952 | 0.7497 |
| 1.2929 | 21.9197 | 520000 | 1.0932 | 0.7500 |
| 1.2924 | 22.3412 | 530000 | 1.0899 | 0.7505 |
| 1.2862 | 22.7627 | 540000 | 1.0887 | 0.7510 |
| 1.2853 | 23.1843 | 550000 | 1.0847 | 0.7517 |
| 1.2827 | 23.6058 | 560000 | 1.0813 | 0.7523 |
| 1.2787 | 24.0273 | 570000 | 1.0805 | 0.7524 |
| 1.276 | 24.4488 | 580000 | 1.0765 | 0.7532 |
| 1.2732 | 24.8704 | 590000 | 1.0770 | 0.7530 |
### Framework versions
- Transformers 4.46.1
- Pytorch 2.2.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.1
|