--- library_name: transformers base_model: gokulsrinivasagan/bert_base_lda_100_v1 tags: - generated_from_trainer metrics: - spearmanr model-index: - name: bert_base_lda_100_v1_stsb results: [] --- # bert_base_lda_100_v1_stsb This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_100_v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0560 - Pearson: 0.5304 - Spearmanr: 0.5350 - Combined Score: 0.5327 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.7331 | 1.0 | 23 | 2.6189 | 0.0643 | 0.0760 | 0.0701 | | 1.9804 | 2.0 | 46 | 2.0897 | 0.2818 | 0.2688 | 0.2753 | | 1.7486 | 3.0 | 69 | 1.9471 | 0.4158 | 0.4153 | 0.4155 | | 1.2963 | 4.0 | 92 | 2.3058 | 0.4520 | 0.4674 | 0.4597 | | 1.0162 | 5.0 | 115 | 1.8442 | 0.4887 | 0.4888 | 0.4888 | | 0.8446 | 6.0 | 138 | 1.7664 | 0.5228 | 0.5290 | 0.5259 | | 0.6767 | 7.0 | 161 | 1.7574 | 0.5152 | 0.5185 | 0.5168 | | 0.5349 | 8.0 | 184 | 1.6844 | 0.5330 | 0.5325 | 0.5328 | | 0.4606 | 9.0 | 207 | 1.9862 | 0.5039 | 0.5084 | 0.5062 | | 0.3951 | 10.0 | 230 | 1.8024 | 0.5266 | 0.5275 | 0.5270 | | 0.3624 | 11.0 | 253 | 2.0157 | 0.5342 | 0.5423 | 0.5382 | | 0.3087 | 12.0 | 276 | 2.4094 | 0.5227 | 0.5385 | 0.5306 | | 0.2879 | 13.0 | 299 | 2.0560 | 0.5304 | 0.5350 | 0.5327 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3