File size: 2,576 Bytes
daf0fd8 20d96b8 daf0fd8 20d96b8 daf0fd8 20d96b8 daf0fd8 20d96b8 daf0fd8 20d96b8 daf0fd8 ea6dc1e daf0fd8 ea6dc1e daf0fd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/bert_base_lda_100_v1
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert_base_lda_100_v1_qqp
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QQP
type: glue
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.8609448429384121
- name: F1
type: f1
value: 0.818621757646148
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert_base_lda_100_v1_qqp
This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_100_v1) on the GLUE QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3234
- Accuracy: 0.8609
- F1: 0.8186
- Combined Score: 0.8398
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:|
| 0.4474 | 1.0 | 1422 | 0.3685 | 0.8284 | 0.7614 | 0.7949 |
| 0.3271 | 2.0 | 2844 | 0.3386 | 0.8476 | 0.8103 | 0.8290 |
| 0.2564 | 3.0 | 4266 | 0.3234 | 0.8609 | 0.8186 | 0.8398 |
| 0.1978 | 4.0 | 5688 | 0.3628 | 0.8653 | 0.8263 | 0.8458 |
| 0.1516 | 5.0 | 7110 | 0.4014 | 0.8695 | 0.8253 | 0.8474 |
| 0.1169 | 6.0 | 8532 | 0.3964 | 0.8673 | 0.8278 | 0.8475 |
| 0.093 | 7.0 | 9954 | 0.4813 | 0.8676 | 0.8279 | 0.8478 |
| 0.076 | 8.0 | 11376 | 0.4346 | 0.8693 | 0.8285 | 0.8489 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3
|