--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_base_lda_100_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_base_lda_100_v1_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.7162327095199349 --- # bert_base_lda_100_v1_mnli This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_100_v1) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6799 - Accuracy: 0.7162 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9588 | 1.0 | 1534 | 0.8420 | 0.6249 | | 0.7857 | 2.0 | 3068 | 0.7451 | 0.6808 | | 0.6825 | 3.0 | 4602 | 0.7162 | 0.6976 | | 0.5973 | 4.0 | 6136 | 0.7056 | 0.7113 | | 0.5208 | 5.0 | 7670 | 0.7460 | 0.7144 | | 0.4464 | 6.0 | 9204 | 0.7907 | 0.7078 | | 0.3775 | 7.0 | 10738 | 0.8362 | 0.7172 | | 0.316 | 8.0 | 12272 | 0.9463 | 0.7101 | | 0.2617 | 9.0 | 13806 | 1.0094 | 0.7111 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3