File size: 2,595 Bytes
529f5d5
 
d415ce1
 
529f5d5
 
 
d415ce1
 
529f5d5
 
 
 
d415ce1
 
 
 
 
 
 
 
 
 
 
 
529f5d5
 
 
 
 
 
 
d415ce1
529f5d5
d415ce1
 
529f5d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
library_name: transformers
language:
- en
base_model: gokulsrinivasagan/bert_base_lda_100_v1
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: bert_base_lda_100_v1_mnli
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE MNLI
      type: glue
      args: mnli
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.3295362082994304
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert_base_lda_100_v1_mnli

This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_100_v1](https://huggingface.co/gokulsrinivasagan/bert_base_lda_100_v1) on the GLUE MNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0962
- Accuracy: 0.3295

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 256
- eval_batch_size: 256
- seed: 10
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.1038        | 1.0   | 1534  | 1.0993          | 0.3274   |
| 1.0989        | 2.0   | 3068  | 1.0990          | 0.3274   |
| 1.0987        | 3.0   | 4602  | 1.1015          | 0.3274   |
| 1.0985        | 4.0   | 6136  | 1.1016          | 0.3182   |
| 1.0986        | 5.0   | 7670  | 1.0989          | 0.3545   |
| 1.0987        | 6.0   | 9204  | 1.0989          | 0.3545   |
| 1.0985        | 7.0   | 10738 | 1.0968          | 0.3182   |
| 1.0986        | 8.0   | 12272 | 1.0991          | 0.3182   |
| 1.0987        | 9.0   | 13806 | 1.0962          | 0.3274   |
| 1.0986        | 10.0  | 15340 | 1.0992          | 0.3274   |
| 1.0985        | 11.0  | 16874 | 1.0990          | 0.3274   |
| 1.0984        | 12.0  | 18408 | 1.0991          | 0.3182   |
| 1.0985        | 13.0  | 19942 | 1.0965          | 0.3182   |
| 1.0987        | 14.0  | 21476 | 1.0987          | 0.3274   |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.2.1+cu118
- Datasets 2.17.0
- Tokenizers 0.20.3