--- base_model: gokuls/bert_12_layer_model_v3_complete_training_48 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: bert_12_layer_model_v3_48_emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.899 --- # bert_12_layer_model_v3_48_emotion This model is a fine-tuned version of [gokuls/bert_12_layer_model_v3_complete_training_48](https://huggingface.co/gokuls/bert_12_layer_model_v3_complete_training_48) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.4023 - Accuracy: 0.899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9112 | 1.0 | 250 | 0.5176 | 0.8495 | | 0.389 | 2.0 | 500 | 0.3617 | 0.8755 | | 0.2894 | 3.0 | 750 | 0.3037 | 0.8905 | | 0.2359 | 4.0 | 1000 | 0.3346 | 0.895 | | 0.1883 | 5.0 | 1250 | 0.3178 | 0.8955 | | 0.1638 | 6.0 | 1500 | 0.3597 | 0.897 | | 0.1217 | 7.0 | 1750 | 0.4075 | 0.8895 | | 0.0962 | 8.0 | 2000 | 0.4023 | 0.899 | | 0.0732 | 9.0 | 2250 | 0.4479 | 0.8955 | | 0.0569 | 10.0 | 2500 | 0.4894 | 0.8985 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.1