File size: 4,367 Bytes
7fe0344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- massive
metrics:
- accuracy
model-index:
- name: bert-tiny-Massive-intent-KD-BERT
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: massive
      type: massive
      config: en-US
      split: train
      args: en-US
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.853418593212002
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-tiny-Massive-intent-KD-BERT

This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the massive dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8380
- Accuracy: 0.8534

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 33
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 5.83          | 1.0   | 720   | 4.8826          | 0.3050   |
| 4.7602        | 2.0   | 1440  | 3.9904          | 0.4191   |
| 4.0301        | 3.0   | 2160  | 3.3806          | 0.5032   |
| 3.4797        | 4.0   | 2880  | 2.9065          | 0.5967   |
| 3.0352        | 5.0   | 3600  | 2.5389          | 0.6596   |
| 2.6787        | 6.0   | 4320  | 2.2342          | 0.7044   |
| 2.3644        | 7.0   | 5040  | 1.9873          | 0.7354   |
| 2.1145        | 8.0   | 5760  | 1.7928          | 0.7462   |
| 1.896         | 9.0   | 6480  | 1.6293          | 0.7644   |
| 1.7138        | 10.0  | 7200  | 1.5062          | 0.7752   |
| 1.5625        | 11.0  | 7920  | 1.3923          | 0.7885   |
| 1.4229        | 12.0  | 8640  | 1.3092          | 0.7978   |
| 1.308         | 13.0  | 9360  | 1.2364          | 0.8018   |
| 1.201         | 14.0  | 10080 | 1.1759          | 0.8155   |
| 1.1187        | 15.0  | 10800 | 1.1322          | 0.8214   |
| 1.0384        | 16.0  | 11520 | 1.0990          | 0.8234   |
| 0.976         | 17.0  | 12240 | 1.0615          | 0.8308   |
| 0.9163        | 18.0  | 12960 | 1.0377          | 0.8328   |
| 0.8611        | 19.0  | 13680 | 1.0054          | 0.8337   |
| 0.812         | 20.0  | 14400 | 0.9926          | 0.8367   |
| 0.7721        | 21.0  | 15120 | 0.9712          | 0.8382   |
| 0.7393        | 22.0  | 15840 | 0.9586          | 0.8357   |
| 0.7059        | 23.0  | 16560 | 0.9428          | 0.8372   |
| 0.6741        | 24.0  | 17280 | 0.9377          | 0.8396   |
| 0.6552        | 25.0  | 18000 | 0.9229          | 0.8377   |
| 0.627         | 26.0  | 18720 | 0.9100          | 0.8416   |
| 0.5972        | 27.0  | 19440 | 0.9028          | 0.8416   |
| 0.5784        | 28.0  | 20160 | 0.8996          | 0.8406   |
| 0.5595        | 29.0  | 20880 | 0.8833          | 0.8451   |
| 0.5438        | 30.0  | 21600 | 0.8772          | 0.8475   |
| 0.5218        | 31.0  | 22320 | 0.8758          | 0.8451   |
| 0.509         | 32.0  | 23040 | 0.8728          | 0.8480   |
| 0.4893        | 33.0  | 23760 | 0.8640          | 0.8480   |
| 0.4948        | 34.0  | 24480 | 0.8541          | 0.8475   |
| 0.4722        | 35.0  | 25200 | 0.8595          | 0.8495   |
| 0.468         | 36.0  | 25920 | 0.8488          | 0.8495   |
| 0.4517        | 37.0  | 26640 | 0.8460          | 0.8505   |
| 0.4462        | 38.0  | 27360 | 0.8450          | 0.8485   |
| 0.4396        | 39.0  | 28080 | 0.8422          | 0.8490   |
| 0.427         | 40.0  | 28800 | 0.8380          | 0.8534   |
| 0.4287        | 41.0  | 29520 | 0.8385          | 0.8480   |
| 0.4222        | 42.0  | 30240 | 0.8319          | 0.8510   |
| 0.421         | 43.0  | 30960 | 0.8296          | 0.8510   |


### Framework versions

- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1