--- base_model: gokuls/HBERTv1_48_L6_H128_A2 tags: - generated_from_trainer datasets: - massive metrics: - accuracy model-index: - name: HBERTv1_48_L6_H128_A2_massive results: - task: name: Text Classification type: text-classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - name: Accuracy type: accuracy value: 0.7791441219872111 --- # HBERTv1_48_L6_H128_A2_massive This model is a fine-tuned version of [gokuls/HBERTv1_48_L6_H128_A2](https://huggingface.co/gokuls/HBERTv1_48_L6_H128_A2) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.9439 - Accuracy: 0.7791 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.7427 | 1.0 | 180 | 3.3038 | 0.2110 | | 3.0115 | 2.0 | 360 | 2.6361 | 0.3601 | | 2.4129 | 3.0 | 540 | 2.1001 | 0.4988 | | 1.946 | 4.0 | 720 | 1.7411 | 0.5617 | | 1.6252 | 5.0 | 900 | 1.4891 | 0.6188 | | 1.3825 | 6.0 | 1080 | 1.3293 | 0.6508 | | 1.201 | 7.0 | 1260 | 1.2183 | 0.6990 | | 1.074 | 8.0 | 1440 | 1.1335 | 0.7304 | | 0.9698 | 9.0 | 1620 | 1.0699 | 0.7472 | | 0.8878 | 10.0 | 1800 | 1.0251 | 0.7555 | | 0.8286 | 11.0 | 1980 | 0.9941 | 0.7629 | | 0.7817 | 12.0 | 2160 | 0.9766 | 0.7678 | | 0.7388 | 13.0 | 2340 | 0.9558 | 0.7703 | | 0.7157 | 14.0 | 2520 | 0.9489 | 0.7782 | | 0.6877 | 15.0 | 2700 | 0.9439 | 0.7791 | ### Framework versions - Transformers 4.34.0 - Pytorch 1.14.0a0+410ce96 - Datasets 2.14.5 - Tokenizers 0.14.0