gmunkhtur commited on
Commit
95d4e42
·
verified ·
1 Parent(s): 6d7be18

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ unigram.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:23525
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
10
+ widget:
11
+ - source_sentence: Монголбанк, Сангийн яам болон Европын сэргээн босголт, хөгжлийн
12
+ банкны санамж бичиг
13
+ sentences:
14
+ - '"Жүжгүүд нь хүүхдийн урлаг гоо зүйн боловсролыг дээшлүүлэхэд хувь нэмэр оруулна."'
15
+ - “Үзэхийн хязгаар” ном хоёр дэлгүүрт борлуулалттай байв
16
+ - Зээлийн эрсдэлийг хуваан үүрэлцэх гэрээ.
17
+ - source_sentence: Улсын дуурь, бүжгийн эрдмийн театрт номын нээлт болно.
18
+ sentences:
19
+ - УДБЭТ-д номын нээлт болно.
20
+ - Хүндрэлээс гарах арга хэмжээ авахгүй бол эдийн засгийн өсөлт 2 хувиас доошилж,
21
+ ажилгүйдлийн төвшин ч 10 хувиас дээшилж, экспортын хэмжээ таван тэрбумам.доллараас
22
+ доошлох магадлалтай аж.
23
+ - Дахин давтан хэлчхэд урлаг бол үзүүлдэг, шинжлэх ухаан нотолдог гэдэг.
24
+ - source_sentence: ОХУ, БНХАУ-ыг Монгол Улсын нутаг дэвсгэрээр холбоно
25
+ sentences:
26
+ - Нийслэлийн 24 дүгээр сургуулийг төгссөн.
27
+ - Зураг нь гайхамшигтай гэж Кейт үнэлжээ.
28
+ - Гурван улс дамнасан худалдаа эргэлтийг дамжин өнгөрүүлнэ
29
+ - source_sentence: “Драмын жүжгийн төрөл”, “Хүүхдийн жүжгийн төрөл”, “Дуулалт жүжгийн
30
+ төрөл”, “Нэг хүний жүжгийн төрөл”-үүдэд 40 гаруй жүжиг санал болгосон
31
+ sentences:
32
+ - Дуурь, бүжгийн эрдмийн театрын уран бүтээлчид буюу балет анги, хөгжим анги, найрал
33
+ дуу, гоцлол дуучид тайзнаа Итали, Орос, Францын сор болсон бүтээлийг түүвэрлэн
34
+ хүргэж, үзэгчдийг зуун дамнуулан цаг хугацаагаар аялуулан сонгодог тансаг орчинд
35
+ тайз дэлгэцээрээ дамжуулан урьсан гээд энэ үдшийн онцлог олон байлаа
36
+ - 20 уран бүтээл, 80 гаруй уран бүтээлч чансаагаа сорьж байгаа ажээ.
37
+ - Цомогт шинэ уран бүтээлүүд багтсан.
38
+ - source_sentence: Олон улсын наадмын шалгаруулалт
39
+ sentences:
40
+ - Мянган тонн үр олгогдсон.
41
+ - Мөн нийт экспортын хэмжээ 10 хувиар, түүн дунд нүүрсний экспорт 50 хувиар  буурсан
42
+ юм.
43
+ - Драмын урлагийн шилдгүүдийг тодруулдаг наадам.
44
+ pipeline_tag: sentence-similarity
45
+ library_name: sentence-transformers
46
+ metrics:
47
+ - pearson_cosine
48
+ - spearman_cosine
49
+ model-index:
50
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
51
+ results:
52
+ - task:
53
+ type: semantic-similarity
54
+ name: Semantic Similarity
55
+ dataset:
56
+ name: dev t
57
+ type: dev-t
58
+ metrics:
59
+ - type: pearson_cosine
60
+ value: 0.573972184548268
61
+ name: Pearson Cosine
62
+ - type: spearman_cosine
63
+ value: 0.5460401569671698
64
+ name: Spearman Cosine
65
+ - task:
66
+ type: semantic-similarity
67
+ name: Semantic Similarity
68
+ dataset:
69
+ name: test t
70
+ type: test-t
71
+ metrics:
72
+ - type: pearson_cosine
73
+ value: 0.5937906658169482
74
+ name: Pearson Cosine
75
+ - type: spearman_cosine
76
+ value: 0.5612769176839287
77
+ name: Spearman Cosine
78
+ ---
79
+
80
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
81
+
82
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) on the csv dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
83
+
84
+ ## Model Details
85
+
86
+ ### Model Description
87
+ - **Model Type:** Sentence Transformer
88
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c -->
89
+ - **Maximum Sequence Length:** 128 tokens
90
+ - **Output Dimensionality:** 384 dimensions
91
+ - **Similarity Function:** Cosine Similarity
92
+ - **Training Dataset:**
93
+ - csv
94
+ <!-- - **Language:** Unknown -->
95
+ <!-- - **License:** Unknown -->
96
+
97
+ ### Model Sources
98
+
99
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
100
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
101
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
102
+
103
+ ### Full Model Architecture
104
+
105
+ ```
106
+ SentenceTransformer(
107
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
108
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
109
+ )
110
+ ```
111
+
112
+ ## Usage
113
+
114
+ ### Direct Usage (Sentence Transformers)
115
+
116
+ First install the Sentence Transformers library:
117
+
118
+ ```bash
119
+ pip install -U sentence-transformers
120
+ ```
121
+
122
+ Then you can load this model and run inference.
123
+ ```python
124
+ from sentence_transformers import SentenceTransformer
125
+
126
+ # Download from the 🤗 Hub
127
+ model = SentenceTransformer("gmunkhtur/paraphrase-mongolian-minilm-mntoken")
128
+ # Run inference
129
+ sentences = [
130
+ 'Олон улсын наадмын шалгаруулалт',
131
+ 'Драмын урлагийн шилдгүүдийг тодруулдаг наадам.',
132
+ 'Мөн нийт экспортын хэмжээ 10 хувиар, түүн дунд нүүрсний экспорт 50 хувиар\xa0 буурсан юм.',
133
+ ]
134
+ embeddings = model.encode(sentences)
135
+ print(embeddings.shape)
136
+ # [3, 384]
137
+
138
+ # Get the similarity scores for the embeddings
139
+ similarities = model.similarity(embeddings, embeddings)
140
+ print(similarities.shape)
141
+ # [3, 3]
142
+ ```
143
+
144
+ <!--
145
+ ### Direct Usage (Transformers)
146
+
147
+ <details><summary>Click to see the direct usage in Transformers</summary>
148
+
149
+ </details>
150
+ -->
151
+
152
+ <!--
153
+ ### Downstream Usage (Sentence Transformers)
154
+
155
+ You can finetune this model on your own dataset.
156
+
157
+ <details><summary>Click to expand</summary>
158
+
159
+ </details>
160
+ -->
161
+
162
+ <!--
163
+ ### Out-of-Scope Use
164
+
165
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
166
+ -->
167
+
168
+ ## Evaluation
169
+
170
+ ### Metrics
171
+
172
+ #### Semantic Similarity
173
+
174
+ * Datasets: `dev-t` and `test-t`
175
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
176
+
177
+ | Metric | dev-t | test-t |
178
+ |:--------------------|:----------|:-----------|
179
+ | pearson_cosine | 0.574 | 0.5938 |
180
+ | **spearman_cosine** | **0.546** | **0.5613** |
181
+
182
+ <!--
183
+ ## Bias, Risks and Limitations
184
+
185
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
186
+ -->
187
+
188
+ <!--
189
+ ### Recommendations
190
+
191
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
192
+ -->
193
+
194
+ ## Training Details
195
+
196
+ ### Training Dataset
197
+
198
+ #### csv
199
+
200
+ * Dataset: csv
201
+ * Size: 23,525 training samples
202
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
203
+ * Approximate statistics based on the first 1000 samples:
204
+ | | sentence1 | sentence2 | score |
205
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|
206
+ | type | string | string | float |
207
+ | details | <ul><li>min: 3 tokens</li><li>mean: 12.82 tokens</li><li>max: 90 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.44 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 0.02</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
208
+ * Samples:
209
+ | sentence1 | sentence2 | score |
210
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------|
211
+ | <code>Хүн амын нягтаршил багатай, газар хөдлөлийн идэвхигүй бүс, газрын гадарга нь тэгш, үер усны давтамж бага газарт Цөмийн энергийн станцийг барьж байгуулах шаардлагатай гэнэ</code> | <code>Энэ станцад захын нэг дээд сургууль эзэмшсэн нөхөр очоод ажиллахгүй.</code> | <code>0.2018195390701294</code> |
212
+ | <code>Уг компани тендерт гадаадынхныг урьсан ба өрөгдлийг нь зургадугаар сарын 3 хүртэл хүлээн авсан байна</code> | <code>«Коммерсантъ» сонин 24-ний өдрийн дугаартаа өгүүлсэн байна</code> | <code>0.2372543811798095</code> |
213
+ | <code>Би “Өүлэн эх”-ийг анх бүтээсэн</code> | <code>Би “Хорин нэгэн зул”-ыг анх бүтээсэн.</code> | <code>0.6730476021766663</code> |
214
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
215
+ ```json
216
+ {
217
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
218
+ }
219
+ ```
220
+
221
+ ### Evaluation Dataset
222
+
223
+ #### csv
224
+
225
+ * Dataset: csv
226
+ * Size: 23,525 evaluation samples
227
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
228
+ * Approximate statistics based on the first 1000 samples:
229
+ | | sentence1 | sentence2 | score |
230
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------|
231
+ | type | string | string | float |
232
+ | details | <ul><li>min: 4 tokens</li><li>mean: 12.78 tokens</li><li>max: 123 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.69 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: -0.04</li><li>mean: 0.48</li><li>max: 0.98</li></ul> |
233
+ * Samples:
234
+ | sentence1 | sentence2 | score |
235
+ |:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------|
236
+ | <code>Анхны тоглолт маань одоо бодоход үнэхээр гоё болж байсан</code> | <code>Яг ямар чиглэлээр тоглохоо мэдэхгүй жаахан охин байсан ч би маш их зүйл сурсан</code> | <code>0.2749532461166382</code> |
237
+ | <code>"Домогт Ану хатан" нь Монголын түүхэн дэх хатан хааны тухай өгүүлдэг</code> | <code>"Домогт Ану хатан" нь Б.Шүүдэрцэцэгийн бүтээл юм.</code> | <code>0.3653741478919983</code> |
238
+ | <code>Советийн хурлаар "Эрдэнэт" болон "Монголросцветмет нэгдэл"-ийн талаар ярилцах ажээ</code> | <code>Асгатын мөнгөний ордыг түшиглэн Орос-Монголын хамтарсан компани байгуулахаар болсон бөгөөд энэ асуудлыг хуралдаанаар хөндөнө гэдгийг эх сурвалж хэлсэн.</code> | <code>0.599888801574707</code> |
239
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
240
+ ```json
241
+ {
242
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
243
+ }
244
+ ```
245
+
246
+ ### Training Hyperparameters
247
+ #### Non-Default Hyperparameters
248
+
249
+ - `eval_strategy`: steps
250
+ - `per_device_train_batch_size`: 16
251
+ - `per_device_eval_batch_size`: 16
252
+ - `num_train_epochs`: 5
253
+ - `warmup_ratio`: 0.1
254
+ - `fp16`: True
255
+ - `batch_sampler`: no_duplicates
256
+
257
+ #### All Hyperparameters
258
+ <details><summary>Click to expand</summary>
259
+
260
+ - `overwrite_output_dir`: False
261
+ - `do_predict`: False
262
+ - `eval_strategy`: steps
263
+ - `prediction_loss_only`: True
264
+ - `per_device_train_batch_size`: 16
265
+ - `per_device_eval_batch_size`: 16
266
+ - `per_gpu_train_batch_size`: None
267
+ - `per_gpu_eval_batch_size`: None
268
+ - `gradient_accumulation_steps`: 1
269
+ - `eval_accumulation_steps`: None
270
+ - `torch_empty_cache_steps`: None
271
+ - `learning_rate`: 5e-05
272
+ - `weight_decay`: 0.0
273
+ - `adam_beta1`: 0.9
274
+ - `adam_beta2`: 0.999
275
+ - `adam_epsilon`: 1e-08
276
+ - `max_grad_norm`: 1.0
277
+ - `num_train_epochs`: 5
278
+ - `max_steps`: -1
279
+ - `lr_scheduler_type`: linear
280
+ - `lr_scheduler_kwargs`: {}
281
+ - `warmup_ratio`: 0.1
282
+ - `warmup_steps`: 0
283
+ - `log_level`: passive
284
+ - `log_level_replica`: warning
285
+ - `log_on_each_node`: True
286
+ - `logging_nan_inf_filter`: True
287
+ - `save_safetensors`: True
288
+ - `save_on_each_node`: False
289
+ - `save_only_model`: False
290
+ - `restore_callback_states_from_checkpoint`: False
291
+ - `no_cuda`: False
292
+ - `use_cpu`: False
293
+ - `use_mps_device`: False
294
+ - `seed`: 42
295
+ - `data_seed`: None
296
+ - `jit_mode_eval`: False
297
+ - `use_ipex`: False
298
+ - `bf16`: False
299
+ - `fp16`: True
300
+ - `fp16_opt_level`: O1
301
+ - `half_precision_backend`: auto
302
+ - `bf16_full_eval`: False
303
+ - `fp16_full_eval`: False
304
+ - `tf32`: None
305
+ - `local_rank`: 0
306
+ - `ddp_backend`: None
307
+ - `tpu_num_cores`: None
308
+ - `tpu_metrics_debug`: False
309
+ - `debug`: []
310
+ - `dataloader_drop_last`: False
311
+ - `dataloader_num_workers`: 0
312
+ - `dataloader_prefetch_factor`: None
313
+ - `past_index`: -1
314
+ - `disable_tqdm`: False
315
+ - `remove_unused_columns`: True
316
+ - `label_names`: None
317
+ - `load_best_model_at_end`: False
318
+ - `ignore_data_skip`: False
319
+ - `fsdp`: []
320
+ - `fsdp_min_num_params`: 0
321
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
322
+ - `fsdp_transformer_layer_cls_to_wrap`: None
323
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
324
+ - `deepspeed`: None
325
+ - `label_smoothing_factor`: 0.0
326
+ - `optim`: adamw_torch
327
+ - `optim_args`: None
328
+ - `adafactor`: False
329
+ - `group_by_length`: False
330
+ - `length_column_name`: length
331
+ - `ddp_find_unused_parameters`: None
332
+ - `ddp_bucket_cap_mb`: None
333
+ - `ddp_broadcast_buffers`: False
334
+ - `dataloader_pin_memory`: True
335
+ - `dataloader_persistent_workers`: False
336
+ - `skip_memory_metrics`: True
337
+ - `use_legacy_prediction_loop`: False
338
+ - `push_to_hub`: False
339
+ - `resume_from_checkpoint`: None
340
+ - `hub_model_id`: None
341
+ - `hub_strategy`: every_save
342
+ - `hub_private_repo`: None
343
+ - `hub_always_push`: False
344
+ - `gradient_checkpointing`: False
345
+ - `gradient_checkpointing_kwargs`: None
346
+ - `include_inputs_for_metrics`: False
347
+ - `include_for_metrics`: []
348
+ - `eval_do_concat_batches`: True
349
+ - `fp16_backend`: auto
350
+ - `push_to_hub_model_id`: None
351
+ - `push_to_hub_organization`: None
352
+ - `mp_parameters`:
353
+ - `auto_find_batch_size`: False
354
+ - `full_determinism`: False
355
+ - `torchdynamo`: None
356
+ - `ray_scope`: last
357
+ - `ddp_timeout`: 1800
358
+ - `torch_compile`: False
359
+ - `torch_compile_backend`: None
360
+ - `torch_compile_mode`: None
361
+ - `dispatch_batches`: None
362
+ - `split_batches`: None
363
+ - `include_tokens_per_second`: False
364
+ - `include_num_input_tokens_seen`: False
365
+ - `neftune_noise_alpha`: None
366
+ - `optim_target_modules`: None
367
+ - `batch_eval_metrics`: False
368
+ - `eval_on_start`: False
369
+ - `use_liger_kernel`: False
370
+ - `eval_use_gather_object`: False
371
+ - `average_tokens_across_devices`: False
372
+ - `prompts`: None
373
+ - `batch_sampler`: no_duplicates
374
+ - `multi_dataset_batch_sampler`: proportional
375
+
376
+ </details>
377
+
378
+ ### Training Logs
379
+ | Epoch | Step | Training Loss | Validation Loss | dev-t_spearman_cosine | test-t_spearman_cosine |
380
+ |:------:|:----:|:-------------:|:---------------:|:---------------------:|:----------------------:|
381
+ | 0 | 0 | - | - | 0.2295 | - |
382
+ | 0.5663 | 500 | 0.0403 | - | - | - |
383
+ | 1.1325 | 1000 | 0.0332 | 0.0320 | 0.5316 | - |
384
+ | 1.6988 | 1500 | 0.0188 | - | - | - |
385
+ | 2.2650 | 2000 | 0.0135 | 0.0311 | 0.5361 | - |
386
+ | 2.8313 | 2500 | 0.0085 | - | - | - |
387
+ | 3.3975 | 3000 | 0.0074 | 0.0310 | 0.5352 | - |
388
+ | 3.9638 | 3500 | 0.0054 | - | - | - |
389
+ | 4.5300 | 4000 | 0.0045 | 0.0308 | 0.5460 | - |
390
+ | 5.0 | 4415 | - | - | - | 0.5613 |
391
+
392
+
393
+ ### Framework Versions
394
+ - Python: 3.10.12
395
+ - Sentence Transformers: 3.3.1
396
+ - Transformers: 4.47.1
397
+ - PyTorch: 2.5.1+cu121
398
+ - Accelerate: 1.2.1
399
+ - Datasets: 3.2.0
400
+ - Tokenizers: 0.21.0
401
+
402
+ ## Citation
403
+
404
+ ### BibTeX
405
+
406
+ #### Sentence Transformers
407
+ ```bibtex
408
+ @inproceedings{reimers-2019-sentence-bert,
409
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
410
+ author = "Reimers, Nils and Gurevych, Iryna",
411
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
412
+ month = "11",
413
+ year = "2019",
414
+ publisher = "Association for Computational Linguistics",
415
+ url = "https://arxiv.org/abs/1908.10084",
416
+ }
417
+ ```
418
+
419
+ <!--
420
+ ## Glossary
421
+
422
+ *Clearly define terms in order to be accessible across audiences.*
423
+ -->
424
+
425
+ <!--
426
+ ## Model Card Authors
427
+
428
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
429
+ -->
430
+
431
+ <!--
432
+ ## Model Card Contact
433
+
434
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
435
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-minilm-l12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 250037
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e637fb06c96353e0b14cb52592ce66a015f38d05eb21bbbd77c0f9bc2a8830a1
3
+ size 470637416
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4275a06916f5096567b8124c5a1824e7b247accaa84a128c932bce68b344c182
3
+ size 18342693
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_lower_case": true,
48
+ "eos_token": "</s>",
49
+ "extra_special_tokens": {},
50
+ "mask_token": "<mask>",
51
+ "max_length": 128,
52
+ "model_max_length": 512,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "<unk>"
65
+ }
unigram.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:185af83f47e4ac151b4773be89bd07943c9263663b3ad514bb5a4f86dd1e8868
3
+ size 16022971