File size: 5,674 Bytes
a3faec2
b2b83af
 
 
 
 
8daf8a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3faec2
 
3b2ade7
d427c42
a3faec2
4161416
 
9d4ed55
 
d427c42
f60725b
 
 
b2b83af
a3faec2
4329608
 
e1c789e
a3faec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1c789e
a3faec2
 
 
 
 
 
 
 
 
 
 
 
 
8daf8a4
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
language:
- en
- id
- jv
- su
license: gemma
tags:
- merge
- mergekit
base_model:
- GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct
- aisingapore/gemma2-9b-cpt-sea-lionv3-instruct
model-index:
- name: gemma2-9b-sahabatai-v1-instruct-BaseTIES
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 73.78
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 43.4
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 19.34
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 9.4
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 19.13
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 37.19
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES
      name: Open LLM Leaderboard
---

# SahabatAI-Lion-9B-TIES-v1
formerly gemma2-9b-cpt-sahabatai-v1-instruct-BaseTIES (model name too long :D )

![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F642b04e4ecec03b44649e318%2FrJ0ogty-DbLUEH48Ms5lE.png%3C%2Fspan%3E)

Based on some research, when a finetuned model is merged with its base model with TIES method, there is possibility the merged model will achieve better output. 

**UPDATE!!! as 20 November 2024, this model is third best model (number one for Gemma2-9B based model) on HF's Open LLM Leaderboard (with Merge/MoErges hide model unchecked) for LLM model below 10B parameters.**

![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F642b04e4ecec03b44649e318%2F8Hv3YtWtzzFlJ0_kUpsT7.png%3C%2Fspan%3E)

gmonsoon/SahabatAI-Lion-9B-TIES-v1 is a merge of the following models:
* [GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct](https://huggingface.co/GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct)
* [aisingapore/gemma2-9b-cpt-sea-lionv3-instruct](https://huggingface.co/aisingapore/gemma2-9b-cpt-sea-lionv3-instruct)

DEMO Spaces: [HERE](https://huggingface.co/spaces/gmonsoon/SahabatAI-Lion-9B-TIES-v1)

## 🧩 Configuration

```yaml
models:
  - model: GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct
    parameters:
      weight: 1
      density: 1
  - model: GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct
    parameters:
      weight: 1
      density: 1
merge_method: ties
base_model: aisingapore/gemma2-9b-cpt-sea-lionv3-instruct
parameters:
  density: 1
  normalize: true
  int8_mask: true
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "gmonsoon/SahabatAI-Lion-9B-TIES-v1"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_gmonsoon__gemma2-9b-sahabatai-v1-instruct-BaseTIES)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |33.70|
|IFEval (0-Shot)    |73.78|
|BBH (3-Shot)       |43.40|
|MATH Lvl 5 (4-Shot)|19.34|
|GPQA (0-shot)      | 9.40|
|MuSR (0-shot)      |19.13|
|MMLU-PRO (5-shot)  |37.19|