Token Classification
GLiNER
PyTorch
multilingual
File size: 23,327 Bytes
a5f0feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d78150c
a5f0feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef6da65
 
a5f0feb
b29764c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a810bbe
 
 
 
 
 
 
 
 
 
a5f0feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
---
license: apache-2.0
language:
- multilingual
library_name: gliner
datasets:
- urchade/pile-mistral-v0.1
pipeline_tag: token-classification
---

# About

GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.


## Links

* Paper: https://arxiv.org/abs/2311.08526
* Repository: https://github.com/urchade/GLiNER

## Installation
To use this model, you must install the GLiNER Python library:
```
!pip install gliner -U
```

## Usage
Once you've downloaded the GLiNER library, you can import the GLiNER class. You can then load this model using `GLiNER.from_pretrained` and predict entities with `predict_entities`.

```python
from gliner import GLiNER

model = GLiNER.from_pretrained("gliner-community/gliner_small-v2.5", load_tokenizer=True)

text = """
Cristiano Ronaldo dos Santos Aveiro (Portuguese pronunciation: [kɾiʃˈtjɐnu ʁɔˈnaldu]; born 5 February 1985) is a Portuguese professional footballer who plays as a forward for and captains both Saudi Pro League club Al Nassr and the Portugal national team. Widely regarded as one of the greatest players of all time, Ronaldo has won five Ballon d'Or awards,[note 3] a record three UEFA Men's Player of the Year Awards, and four European Golden Shoes, the most by a European player. He has won 33 trophies in his career, including seven league titles, five UEFA Champions Leagues, the UEFA European Championship and the UEFA Nations League. Ronaldo holds the records for most appearances (183), goals (140) and assists (42) in the Champions League, goals in the European Championship (14), international goals (128) and international appearances (205). He is one of the few players to have made over 1,200 professional career appearances, the most by an outfield player, and has scored over 850 official senior career goals for club and country, making him the top goalscorer of all time.
"""

labels = ["person", "award", "date", "competitions", "teams"]

entities = model.predict_entities(text, labels)

for entity in entities:
    print(entity["text"], "=>", entity["label"])
```

```
Cristiano Ronaldo dos Santos Aveiro => person
5 February 1985 => date
Al Nassr => teams
Portugal national team => teams
Ballon d'Or => award
UEFA Men's Player of the Year Awards => award
European Golden Shoes => award
UEFA Champions Leagues => competitions
UEFA European Championship => competitions
UEFA Nations League => competitions
Champions League => competitions
European Championship => competitions
```

## Named Entity Recognition benchmark result
Below is a comparison of results between previous versions of the model and the current one:
![Models performance](models_comparison.png)

### Results on other datasets
| Model                              | Dataset             | Precision | Recall | F1 Score |
|------------------------------------|---------------------|-----------|--------|----------|
| gliner-community/gliner_small-v2.5 | ACE 2004            | 35.18%    | 22.81% | 27.67%   |
|                                    | ACE 2005            | 35.89%    | 22.39% | 27.58%   |
|                                    | AnatEM              | 49.12%    | 31.31% | 38.24%   |
|                                    | Broad Tweet Corpus  | 59.51%    | 77.85% | 67.46%   |
|                                    | CoNLL 2003          | 63.16%    | 70.43% | 66.60%   |
|                                    | FabNER              | 23.78%    | 22.55% | 23.15%   |
|                                    | FindVehicle         | 37.46%    | 40.06% | 38.72%   |
|                                    | GENIA_NER           | 45.90%    | 54.11% | 49.67%   |
|                                    | HarveyNER           | 13.20%    | 32.58% | 18.78%   |
|                                    | MultiNERD           | 45.87%    | 87.01% | 60.07%   |
|                                    | Ontonotes           | 23.05%    | 41.16% | 29.55%   |
|                                    | PolyglotNER         | 31.88%    | 67.22% | 43.25%   |
|                                    | TweetNER7           | 40.98%    | 39.91% | 40.44%   |
|                                    | WikiANN en          | 55.35%    | 60.06% | 57.61%   |
|                                    | WikiNeural          | 64.52%    | 86.24% | 73.81%   |
|                                    | bc2gm               | 51.70%    | 49.99% | 50.83%   |
|                                    | bc4chemd            | 30.78%    | 57.56% | 40.11%   |
|                                    | bc5cdr              | 63.48%    | 69.65% | 66.42%   |
|                                    | ncbi                | 63.36%    | 66.67% | 64.97%   |
|                                    | **Average**         |           |        | **46.58%**  |
|------------------------------------|---------------------|-----------|--------|----------|
| urchade/gliner_small-v2.1          | ACE 2004            | 38.89%    | 23.53% | 29.32%   |
|                                    | ACE 2005            | 42.09%    | 26.82% | 32.76%   |
|                                    | AnatEM              | 63.71%    | 19.45% | 29.80%   |
|                                    | Broad Tweet Corpus  | 57.01%    | 70.49% | 63.04%   |
|                                    | CoNLL 2003          | 57.11%    | 62.66% | 59.76%   |
|                                    | FabNER              | 32.41%    | 12.33% | 17.87%   |
|                                    | FindVehicle         | 43.47%    | 33.02% | 37.53%   |
|                                    | GENIA_NER           | 61.03%    | 37.25% | 46.26%   |
|                                    | HarveyNER           | 23.12%    | 15.16% | 18.32%   |
|                                    | MultiNERD           | 43.63%    | 83.60% | 57.34%   |
|                                    | Ontonotes           | 23.25%    | 35.41% | 28.07%   |
|                                    | PolyglotNER         | 29.47%    | 64.41% | 40.44%   |
|                                    | TweetNER7           | 44.78%    | 30.83% | 36.52%   |
|                                    | WikiANN en          | 52.58%    | 58.31% | 55.30%   |
|                                    | WikiNeural          | 53.38%    | 82.19% | 64.72%   |
|                                    | bc2gm               | 66.64%    | 30.56% | 41.90%   |
|                                    | bc4chemd            | 42.01%    | 56.03% | 48.02%   |
|                                    | bc5cdr              | 72.03%    | 58.58% | 64.61%   |
|                                    | ncbi                | 68.88%    | 46.71% | 55.67%   |
|                                    | **Average**         |           |        | **43.54%**  |
|------------------------------------|---------------------|-----------|--------|----------|
| EmergentMethods/gliner_small-v2.1  | ACE 2004            | 39.92%    | 17.50% | 24.34%   |
|                                    | ACE 2005            | 38.53%    | 16.58% | 23.18%   |
|                                    | AnatEM              | 55.95%    | 25.69% | 35.22%   |
|                                    | Broad Tweet Corpus  | 66.63%    | 72.00% | 69.21%   |
|                                    | CoNLL 2003          | 62.89%    | 58.96% | 60.86%   |
|                                    | FabNER              | 32.76%    | 13.33% | 18.95%   |
|                                    | FindVehicle         | 42.93%    | 43.20% | 43.06%   |
|                                    | GENIA_NER           | 51.28%    | 43.75% | 47.22%   |
|                                    | HarveyNER           | 24.82%    | 21.52% | 23.05%   |
|                                    | MultiNERD           | 59.27%    | 80.69% | 68.34%   |
|                                    | Ontonotes           | 32.97%    | 37.59% | 35.13%   |
|                                    | PolyglotNER         | 33.60%    | 63.30% | 43.90%   |
|                                    | TweetNER7           | 46.90%    | 28.66% | 35.58%   |
|                                    | WikiANN en          | 51.91%    | 55.43% | 53.61%   |
|                                    | WikiNeural          | 70.65%    | 82.21% | 75.99%   |
|                                    | bc2gm               | 49.95%    | 43.13% | 46.29%   |
|                                    | bc4chemd            | 35.88%    | 71.64% | 47.81%   |
|                                    | bc5cdr              | 68.41%    | 68.90% | 68.65%   |
|                                    | ncbi                | 55.31%    | 59.87% | 57.50%   |
|                                    | **Average**         |           |        | **46.20%**  |
|-----------------------------------------|---------------------|-----------|--------|----------|
| gliner-community/gliner_medium-v2.5     | ACE 2004            | 33.06%    | 20.96% | 25.66%   |
|                                         | ACE 2005            | 33.65%    | 19.65% | 24.81%   |
|                                         | AnatEM              | 52.03%    | 35.28% | 42.05%   |
|                                         | Broad Tweet Corpus  | 60.57%    | 79.09% | 68.60%   |
|                                         | CoNLL 2003          | 63.80%    | 68.31% | 65.98%   |
|                                         | FabNER              | 26.20%    | 22.26% | 24.07%   |
|                                         | FindVehicle         | 41.95%    | 40.68% | 41.30%   |
|                                         | GENIA_NER           | 51.83%    | 62.34% | 56.60%   |
|                                         | HarveyNER           | 14.04%    | 32.17% | 19.55%   |
|                                         | MultiNERD           | 47.63%    | 88.78% | 62.00%   |
|                                         | Ontonotes           | 21.68%    | 38.41% | 27.71%   |
|                                         | PolyglotNER         | 32.73%    | 68.27% | 44.24%   |
|                                         | TweetNER7           | 40.39%    | 37.64% | 38.97%   |
|                                         | WikiANN en          | 56.41%    | 59.90% | 58.10%   |
|                                         | WikiNeural          | 65.61%    | 86.28% | 74.54%   |
|                                         | bc2gm               | 55.20%    | 56.71% | 55.95%   |
|                                         | bc4chemd            | 35.94%    | 63.67% | 45.94%   |
|                                         | bc5cdr              | 63.50%    | 70.09% | 66.63%   |
|                                         | ncbi                | 62.96%    | 68.55% | 65.63%   |
|                                         | **Average**         |           |        | **47.81%**  |
|-----------------------------------------|---------------------|-----------|--------|----------|
| urchade/gliner_medium-v2.1              | ACE 2004            | 36.33%    | 22.74% | 27.97%   |
|                                         | ACE 2005            | 40.49%    | 25.46% | 31.27%   |
|                                         | AnatEM              | 59.75%    | 16.87% | 26.31%   |
|                                         | Broad Tweet Corpus  | 60.89%    | 67.25% | 63.91%   |
|                                         | CoNLL 2003          | 60.62%    | 62.39% | 61.50%   |
|                                         | FabNER              | 27.72%    | 12.24% | 16.98%   |
|                                         | FindVehicle         | 41.55%    | 31.31% | 35.71%   |
|                                         | GENIA_NER           | 60.86%    | 43.93% | 51.03%   |
|                                         | HarveyNER           | 23.20%    | 23.16% | 23.18%   |
|                                         | MultiNERD           | 41.25%    | 83.74% | 55.27%   |
|                                         | Ontonotes           | 20.58%    | 34.11% | 25.67%   |
|                                         | PolyglotNER         | 31.32%    | 64.22% | 42.11%   |
|                                         | TweetNER7           | 44.52%    | 33.42% | 38.18%   |
|                                         | WikiANN en          | 54.57%    | 56.47% | 55.51%   |
|                                         | WikiNeural          | 57.60%    | 81.57% | 67.52%   |
|                                         | bc2gm               | 67.98%    | 33.45% | 44.84%   |
|                                         | bc4chemd            | 45.66%    | 52.00% | 48.62%   |
|                                         | bc5cdr              | 72.20%    | 58.12% | 64.40%   |
|                                         | ncbi                | 73.12%    | 49.74% | 59.20%   |
|                                         | **Average**         |           |        | **44.17%**  |
|-----------------------------------------|---------------------|-----------|--------|----------|
| EmergentMethods/gliner_news_medium-v2.1 | ACE 2004            | 39.21%    | 17.24% | 23.95%   |
|                                         | ACE 2005            | 39.82%    | 16.48% | 23.31%   |
|                                         | AnatEM              | 57.67%    | 23.57% | 33.46%   |
|                                         | Broad Tweet Corpus  | 69.52%    | 65.94% | 67.69%   |
|                                         | CoNLL 2003          | 68.26%    | 58.45% | 62.97%   |
|                                         | FabNER              | 30.74%    | 15.51% | 20.62%   |
|                                         | FindVehicle         | 40.33%    | 37.37% | 38.79%   |
|                                         | GENIA_NER           | 53.70%    | 47.73% | 50.54%   |
|                                         | HarveyNER           | 26.29%    | 27.05% | 26.67%   |
|                                         | MultiNERD           | 56.78%    | 81.96% | 67.08%   |
|                                         | Ontonotes           | 30.90%    | 35.86% | 33.19%   |
|                                         | PolyglotNER         | 35.98%    | 60.96% | 45.25%   |
|                                         | TweetNER7           | 52.37%    | 30.50% | 38.55%   |
|                                         | WikiANN en          | 53.81%    | 52.29% | 53.04%   |
|                                         | WikiNeural          | 76.84%    | 78.92% | 77.86%   |
|                                         | bc2gm               | 62.97%    | 44.24% | 51.96%   |
|                                         | bc4chemd            | 44.90%    | 65.56% | 53.30%   |
|                                         | bc5cdr              | 73.93%    | 67.03% | 70.31%   |
|                                         | ncbi                | 69.53%    | 60.82% | 64.88%   |
|                                         | **Average**         |           |        | **47.55%**  |
|-----------------------------------------|---------------------|-----------|--------|----------|
| gliner-community/gliner_large-v2.5      | ACE 2004            | 31.64%    | 22.81% | 26.51%   |
|                                         | ACE 2005            | 32.10%    | 22.56% | 26.49%   |
|                                         | AnatEM              | 53.64%    | 27.82% | 36.64%   |
|                                         | Broad Tweet Corpus  | 61.93%    | 76.85% | 68.59%   |
|                                         | CoNLL 2003          | 62.83%    | 67.71% | 65.18%   |
|                                         | FabNER              | 24.54%    | 27.03% | 25.73%   |
|                                         | FindVehicle         | 40.71%    | 56.24% | 47.23%   |
|                                         | GENIA_NER           | 43.56%    | 52.56% | 47.64%   |
|                                         | HarveyNER           | 14.85%    | 27.05% | 19.17%   |
|                                         | MultiNERD           | 38.04%    | 89.17% | 53.33%   |
|                                         | Ontonotes           | 17.28%    | 40.16% | 24.16%   |
|                                         | PolyglotNER         | 32.88%    | 63.31% | 43.28%   |
|                                         | TweetNER7           | 38.03%    | 41.43% | 39.66%   |
|                                         | WikiANN en          | 57.80%    | 60.54% | 59.14%   |
|                                         | WikiNeural          | 67.72%    | 83.94% | 74.96%   |
|                                         | bc2gm               | 54.74%    | 48.54% | 51.45%   |
|                                         | bc4chemd            | 40.20%    | 58.66% | 47.71%   |
|                                         | bc5cdr              | 66.27%    | 71.95% | 69.00%   |
|                                         | ncbi                | 68.09%    | 61.55% | 64.65%   |
|                                         | **Average**         |           |        | **46.87%**  |
|-----------------------------------------|---------------------|-----------|--------|----------|
| urchade/gliner_large-v2.1               | ACE 2004            | 37.52%    | 25.38% | 30.28%   |
|                                         | ACE 2005            | 39.02%    | 29.00% | 33.27%   |
|                                         | AnatEM              | 52.86%    | 13.64% | 21.68%   |
|                                         | Broad Tweet Corpus  | 51.44%    | 71.73% | 59.91%   |
|                                         | CoNLL 2003          | 54.86%    | 64.98% | 59.49%   |
|                                         | FabNER              | 23.98%    | 16.00% | 19.19%   |
|                                         | FindVehicle         | 47.04%    | 57.53% | 51.76%   |
|                                         | GENIA_NER           | 58.10%    | 49.98% | 53.74%   |
|                                         | HarveyNER           | 16.29%    | 21.93% | 18.69%   |
|                                         | MultiNERD           | 34.09%    | 85.43% | 48.74%   |
|                                         | Ontonotes           | 14.02%    | 32.01% | 19.50%   |
|                                         | PolyglotNER         | 28.53%    | 64.92% | 39.64%   |
|                                         | TweetNER7           | 38.00%    | 34.34% | 36.08%   |
|                                         | WikiANN en          | 51.69%    | 59.92% | 55.50%   |
|                                         | WikiNeural          | 50.94%    | 82.08% | 62.87%   |
|                                         | bc2gm               | 64.48%    | 32.47% | 43.19%   |
|                                         | bc4chemd            | 48.66%    | 57.52% | 52.72%   |
|                                         | bc5cdr              | 72.19%    | 64.27% | 68.00%   |
|                                         | ncbi                | 69.54%    | 52.25% | 59.67%   |
|                                         | **Average**         |           |        | **43.89%**  |
|-----------------------------------------|---------------------|-----------|--------|----------|
| EmergenMethods/fliner_news_large-v2.1   | ACE 2004            | 43.19%    | 18.39% | 25.80%   |
|                                         | ACE 2005            | 45.24%    | 21.20% | 28.87%   |
|                                         | AnatEM              | 61.51%    | 21.66% | 32.04%   |
|                                         | Broad Tweet Corpus  | 69.38%    | 68.99% | 69.18%   |
|                                         | CoNLL 2003          | 61.47%    | 52.18% | 56.45%   |
|                                         | FabNER              | 27.42%    | 19.11% | 22.52%   |
|                                         | FindVehicle         | 46.30%    | 62.48% | 53.19%   |
|                                         | GENIA_NER           | 54.13%    | 54.02% | 54.07%   |
|                                         | HarveyNER           | 15.91%    | 15.78% | 15.84%   |
|                                         | MultiNERD           | 53.73%    | 79.07% | 63.98%   |
|                                         | Ontonotes           | 26.78%    | 39.77% | 32.01%   |
|                                         | PolyglotNER         | 34.28%    | 55.87% | 42.49%   |
|                                         | TweetNER7           | 48.06%    | 28.18% | 35.53%   |
|                                         | WikiANN en          | 53.66%    | 51.34% | 52.47%   |
|                                         | WikiNeural          | 69.81%    | 70.75% | 70.28%   |
|                                         | bc2gm               | 59.83%    | 37.62% | 46.20%   |
|                                         | bc4chemd            | 46.24%    | 69.15% | 55.42%   |
|                                         | bc5cdr              | 71.94%    | 70.37% | 71.15%   |
|                                         | ncbi                | 70.17%    | 61.44% | 65.52%   |
|                                         | **Average**         |           |        | **47.00%**  |
|-----------------------------------------|---------------------|-----------|--------|----------|

## Other available models

| Release | Model Name | # of Parameters | Language | License |
| - | - | - | - | - |
| v0 | [urchade/gliner_base](https://huggingface.co/urchade/gliner_base)<br>[urchade/gliner_multi](https://huggingface.co/urchade/gliner_multi) | 209M<br>209M | English<br>Multilingual | cc-by-nc-4.0 |
| v1 | [urchade/gliner_small-v1](https://huggingface.co/urchade/gliner_small-v1)<br>[urchade/gliner_medium-v1](https://huggingface.co/urchade/gliner_medium-v1)<br>[urchade/gliner_large-v1](https://huggingface.co/urchade/gliner_large-v1) | 166M<br>209M<br>459M | English <br> English <br> English | cc-by-nc-4.0 |
| v2 | [urchade/gliner_small-v2](https://huggingface.co/urchade/gliner_small-v2)<br>[urchade/gliner_medium-v2](https://huggingface.co/urchade/gliner_medium-v2)<br>[urchade/gliner_large-v2](https://huggingface.co/urchade/gliner_large-v2) | 166M<br>209M<br>459M |  English <br> English <br> English | apache-2.0 |
| v2.1 | [urchade/gliner_small-v2.1](https://huggingface.co/urchade/gliner_small-v2.1)<br>[urchade/gliner_medium-v2.1](https://huggingface.co/urchade/gliner_medium-v2.1)<br>[urchade/gliner_large-v2.1](https://huggingface.co/urchade/gliner_large-v2.1) <br>[urchade/gliner_multi-v2.1](https://huggingface.co/urchade/gliner_multi-v2.1) | 166M<br>209M<br>459M<br>209M | English <br> English <br> English <br> Multilingual | apache-2.0 |


## Model Authors
The model authors are:
* [Urchade Zaratiana](https://huggingface.co/urchade)
* [Ihor Stepanov](https://huggingface.co/Ihor)
* Nadi Tomeh
* Pierre Holat
* Thierry Charnois

## Citation
```bibtex
@misc{zaratiana2023gliner,
      title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer}, 
      author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois},
      year={2023},
      eprint={2311.08526},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```