givkashi commited on
Commit
6f9ab36
·
verified ·
1 Parent(s): 981412d

Update config.yaml

Browse files
Files changed (1) hide show
  1. config.yaml +138 -138
config.yaml CHANGED
@@ -1,138 +1,138 @@
1
- location:
2
- data_root_dir: C:\Users\Green\Desktop\lama-main/celeba-hq-dataset/
3
- out_root_dir: F:\Result celeba/experiments/
4
- tb_dir: F:\Result celeba/tb_logs/
5
- pretrained_models: C:\Users\Green\Desktop\lama-main/
6
- data:
7
- batch_size: 25
8
- val_batch_size: 40
9
- num_workers: 4
10
- train:
11
- indir: ${location.data_root_dir}/train_256
12
- out_size: 256
13
- mask_gen_kwargs:
14
- irregular_proba: 1
15
- irregular_kwargs:
16
- max_angle: 4
17
- max_len: 200
18
- max_width: 100
19
- max_times: 5
20
- min_times: 1
21
- box_proba: 1
22
- box_kwargs:
23
- margin: 10
24
- bbox_min_size: 30
25
- bbox_max_size: 150
26
- max_times: 4
27
- min_times: 1
28
- segm_proba: 0
29
- transform_variant: no_augs
30
- dataloader_kwargs:
31
- batch_size: ${data.batch_size}
32
- shuffle: true
33
- num_workers: ${data.num_workers}
34
- val:
35
- indir: ${location.data_root_dir}/val_256
36
- img_suffix: .png
37
- dataloader_kwargs:
38
- batch_size: ${data.val_batch_size}
39
- shuffle: false
40
- num_workers: ${data.num_workers}
41
- visual_test: null
42
- generator:
43
- kind: Swin_UNET
44
- discriminator:
45
- kind: pix2pixhd_nlayer
46
- input_nc: 3
47
- ndf: 64
48
- n_layers: 4
49
- optimizers:
50
- generator:
51
- kind: adam
52
- lr: 0.001
53
- discriminator:
54
- kind: adam
55
- lr: 0.0001
56
- visualizer:
57
- kind: directory
58
- outdir: F:\Result celeba\experiments\2022-06-12_14-48-59_train_lama-fourier-celeba.yaml_aaa\samples
59
- key_order:
60
- - image
61
- - predicted_image
62
- - discr_output_fake
63
- - discr_output_real
64
- - inpainted
65
- - eye
66
- - eye_pred
67
- - hair
68
- - hair_pred
69
- - skin
70
- - skin_pred
71
- rescale_keys:
72
- - discr_output_fake
73
- - discr_output_real
74
- evaluator:
75
- kind: default
76
- inpainted_key: inpainted
77
- integral_kind: ssim_fid100_f1
78
- trainer:
79
- kwargs:
80
- gpus: 1
81
- accelerator: dp
82
- max_epochs: 50
83
- gradient_clip_val: 1
84
- limit_train_batches: 25000
85
- log_every_n_steps: 300
86
- precision: 32
87
- terminate_on_nan: false
88
- check_val_every_n_epoch: 5
89
- num_sanity_val_steps: 0
90
- replace_sampler_ddp: false
91
- checkpoint_kwargs:
92
- verbose: true
93
- save_top_k: 5
94
- save_last: true
95
- monitor: val_ssim_fid100_f1_total_mean
96
- mode: max
97
- run_title: aaa
98
- training_model:
99
- kind: default
100
- visualize_each_iters: 100
101
- concat_mask: true
102
- store_discr_outputs_for_vis: true
103
- losses:
104
- l1:
105
- weight_missing: 0
106
- weight_known: 10
107
- weight_known_skin: 3
108
- weight_known_eye: 3
109
- weight_known_ear: 3
110
- weight_known_lip: 3
111
- weight_known_cloth: 3
112
- weight_known_hair: 3
113
- perceptual:
114
- weight: 0
115
- adversarial_component:
116
- weight_skin: 0.1
117
- weight_eye: 0.15
118
- weight_ear: 0.15
119
- weight_lip: 0.15
120
- weight_cloth: 0.1
121
- weight_hair: 0.1
122
- adversarial:
123
- kind: r1
124
- weight: 10
125
- gp_coef: 0.001
126
- mask_as_fake_target: true
127
- allow_scale_mask: true
128
- feature_matching:
129
- weight: 100
130
- weight_skin: 10
131
- weight_eye: 15
132
- weight_ear: 15
133
- weight_lip: 15
134
- weight_cloth: 10
135
- weight_hair: 10
136
- resnet_pl:
137
- weight: 30
138
- weights_path: C:\Users\Green\Desktop\lama-main
 
1
+ location:
2
+ data_root_dir: ${location.data_root_dir}
3
+ out_root_dir: ${location.data_root_dir}
4
+ tb_dir: ${location.data_root_dir}
5
+ pretrained_models: ${location.data_root_dir}
6
+ data:
7
+ batch_size: 25
8
+ val_batch_size: 40
9
+ num_workers: 4
10
+ train:
11
+ indir: ${location.data_root_dir}/train_256
12
+ out_size: 256
13
+ mask_gen_kwargs:
14
+ irregular_proba: 1
15
+ irregular_kwargs:
16
+ max_angle: 4
17
+ max_len: 200
18
+ max_width: 100
19
+ max_times: 5
20
+ min_times: 1
21
+ box_proba: 1
22
+ box_kwargs:
23
+ margin: 10
24
+ bbox_min_size: 30
25
+ bbox_max_size: 150
26
+ max_times: 4
27
+ min_times: 1
28
+ segm_proba: 0
29
+ transform_variant: no_augs
30
+ dataloader_kwargs:
31
+ batch_size: ${data.batch_size}
32
+ shuffle: true
33
+ num_workers: ${data.num_workers}
34
+ val:
35
+ indir: ${location.data_root_dir}/val_256
36
+ img_suffix: .png
37
+ dataloader_kwargs:
38
+ batch_size: ${data.val_batch_size}
39
+ shuffle: false
40
+ num_workers: ${data.num_workers}
41
+ visual_test: null
42
+ generator:
43
+ kind: Swin_UNET
44
+ discriminator:
45
+ kind: pix2pixhd_nlayer
46
+ input_nc: 3
47
+ ndf: 64
48
+ n_layers: 4
49
+ optimizers:
50
+ generator:
51
+ kind: adam
52
+ lr: 0.001
53
+ discriminator:
54
+ kind: adam
55
+ lr: 0.0001
56
+ visualizer:
57
+ kind: directory
58
+ outdir: ${location.data_root_dir}/samples
59
+ key_order:
60
+ - image
61
+ - predicted_image
62
+ - discr_output_fake
63
+ - discr_output_real
64
+ - inpainted
65
+ - eye
66
+ - eye_pred
67
+ - hair
68
+ - hair_pred
69
+ - skin
70
+ - skin_pred
71
+ rescale_keys:
72
+ - discr_output_fake
73
+ - discr_output_real
74
+ evaluator:
75
+ kind: default
76
+ inpainted_key: inpainted
77
+ integral_kind: ssim_fid100_f1
78
+ trainer:
79
+ kwargs:
80
+ gpus: 1
81
+ accelerator: dp
82
+ max_epochs: 50
83
+ gradient_clip_val: 1
84
+ limit_train_batches: 25000
85
+ log_every_n_steps: 300
86
+ precision: 32
87
+ terminate_on_nan: false
88
+ check_val_every_n_epoch: 5
89
+ num_sanity_val_steps: 0
90
+ replace_sampler_ddp: false
91
+ checkpoint_kwargs:
92
+ verbose: true
93
+ save_top_k: 5
94
+ save_last: true
95
+ monitor: val_ssim_fid100_f1_total_mean
96
+ mode: max
97
+ run_title: aaa
98
+ training_model:
99
+ kind: default
100
+ visualize_each_iters: 100
101
+ concat_mask: true
102
+ store_discr_outputs_for_vis: true
103
+ losses:
104
+ l1:
105
+ weight_missing: 0
106
+ weight_known: 10
107
+ weight_known_skin: 3
108
+ weight_known_eye: 3
109
+ weight_known_ear: 3
110
+ weight_known_lip: 3
111
+ weight_known_cloth: 3
112
+ weight_known_hair: 3
113
+ perceptual:
114
+ weight: 0
115
+ adversarial_component:
116
+ weight_skin: 0.1
117
+ weight_eye: 0.15
118
+ weight_ear: 0.15
119
+ weight_lip: 0.15
120
+ weight_cloth: 0.1
121
+ weight_hair: 0.1
122
+ adversarial:
123
+ kind: r1
124
+ weight: 10
125
+ gp_coef: 0.001
126
+ mask_as_fake_target: true
127
+ allow_scale_mask: true
128
+ feature_matching:
129
+ weight: 100
130
+ weight_skin: 10
131
+ weight_eye: 15
132
+ weight_ear: 15
133
+ weight_lip: 15
134
+ weight_cloth: 10
135
+ weight_hair: 10
136
+ resnet_pl:
137
+ weight: 30
138
+ weights_path: ${location.data_root_dir}/lama-main