gijs commited on
Commit
b091047
·
1 Parent(s): 93a6691

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: aces-roberta-base-13
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # aces-roberta-base-13
19
+
20
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.5171
23
+ - Precision: 0.8348
24
+ - Recall: 0.8531
25
+ - F1: 0.8399
26
+ - Accuracy: 0.8531
27
+ - F1 Who: 0.9134
28
+ - F1 What: 0.8505
29
+ - F1 Where: 0.8444
30
+ - F1 How: 0.9391
31
+
32
+ ## Model description
33
+
34
+ More information needed
35
+
36
+ ## Intended uses & limitations
37
+
38
+ More information needed
39
+
40
+ ## Training and evaluation data
41
+
42
+ More information needed
43
+
44
+ ## Training procedure
45
+
46
+ ### Training hyperparameters
47
+
48
+ The following hyperparameters were used during training:
49
+ - learning_rate: 1e-05
50
+ - train_batch_size: 8
51
+ - eval_batch_size: 8
52
+ - seed: 42
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - num_epochs: 10
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | F1 Who | F1 What | F1 Where | F1 How |
60
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------:|:-------:|:--------:|:------:|
61
+ | 1.2251 | 1.0 | 50 | 1.1108 | 0.6219 | 0.6941 | 0.6168 | 0.6941 | 0.0625 | 0.6856 | 0.5926 | 0.8138 |
62
+ | 0.6932 | 2.0 | 100 | 0.7015 | 0.7448 | 0.8031 | 0.7639 | 0.8031 | 0.8730 | 0.7932 | 0.8054 | 0.9293 |
63
+ | 0.5636 | 3.0 | 150 | 0.6059 | 0.8028 | 0.8289 | 0.8032 | 0.8289 | 0.8819 | 0.8095 | 0.8186 | 0.9346 |
64
+ | 0.4894 | 4.0 | 200 | 0.5492 | 0.8251 | 0.8499 | 0.8314 | 0.8499 | 0.9077 | 0.8402 | 0.8340 | 0.9393 |
65
+ | 0.4381 | 5.0 | 250 | 0.5289 | 0.8237 | 0.8523 | 0.8353 | 0.8523 | 0.9219 | 0.8497 | 0.8559 | 0.9438 |
66
+ | 0.4611 | 6.0 | 300 | 0.5233 | 0.8217 | 0.8507 | 0.8345 | 0.8507 | 0.9219 | 0.8346 | 0.8267 | 0.9436 |
67
+ | 0.3671 | 7.0 | 350 | 0.5268 | 0.8383 | 0.8507 | 0.8360 | 0.8507 | 0.9206 | 0.8485 | 0.8393 | 0.9395 |
68
+ | 0.3278 | 8.0 | 400 | 0.5278 | 0.8370 | 0.8507 | 0.8369 | 0.8507 | 0.9147 | 0.8448 | 0.8444 | 0.9348 |
69
+ | 0.3727 | 9.0 | 450 | 0.5170 | 0.8339 | 0.8547 | 0.8405 | 0.8547 | 0.9134 | 0.8549 | 0.8407 | 0.9423 |
70
+ | 0.372 | 10.0 | 500 | 0.5171 | 0.8348 | 0.8531 | 0.8399 | 0.8531 | 0.9134 | 0.8505 | 0.8444 | 0.9391 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.30.2
76
+ - Pytorch 1.13.1+cu117
77
+ - Datasets 2.15.0
78
+ - Tokenizers 0.13.3