File size: 3,390 Bytes
b62e036
 
 
 
 
 
 
 
 
fdbf082
b62e036
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
base_model: roberta-large
model-index:
- name: aces-roberta-13
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# aces-roberta-13

This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4600
- Precision: 0.8364
- Recall: 0.8452
- F1: 0.8383
- Accuracy: 0.8452
- F1 Who: 0.9189
- F1 What: 0.8621
- F1 Where: 0.9231
- F1 How: 0.9141

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy | F1 Who | F1 What | F1 Where | F1 How |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|:------:|:-------:|:--------:|:------:|
| 1.9849        | 0.35  | 20   | 1.4123          | 0.5426    | 0.6351 | 0.5494 | 0.6351   | 0.1026 | 0.6222  | 0.3232   | 0.7857 |
| 1.2159        | 0.7   | 40   | 0.9450          | 0.6559    | 0.7188 | 0.6592 | 0.7188   | 0.6780 | 0.7539  | 0.7071   | 0.7882 |
| 0.8634        | 1.05  | 60   | 0.6885          | 0.7652    | 0.7994 | 0.7725 | 0.7994   | 0.9067 | 0.8152  | 0.8070   | 0.8940 |
| 0.6777        | 1.4   | 80   | 0.6144          | 0.7650    | 0.7946 | 0.7711 | 0.7946   | 0.9189 | 0.7876  | 0.8039   | 0.9085 |
| 0.6051        | 1.75  | 100  | 0.5485          | 0.8126    | 0.8278 | 0.8150 | 0.8278   | 0.9315 | 0.8362  | 0.8148   | 0.9241 |
| 0.5511        | 2.11  | 120  | 0.5264          | 0.8113    | 0.8167 | 0.8036 | 0.8167   | 0.9315 | 0.8444  | 0.8257   | 0.9199 |
| 0.486         | 2.46  | 140  | 0.4867          | 0.8230    | 0.8357 | 0.8248 | 0.8357   | 0.9315 | 0.8539  | 0.9091   | 0.9048 |
| 0.4813        | 2.81  | 160  | 0.4767          | 0.8285    | 0.8278 | 0.8213 | 0.8278   | 0.9189 | 0.8701  | 0.9076   | 0.9135 |
| 0.4494        | 3.16  | 180  | 0.5042          | 0.8152    | 0.8199 | 0.8126 | 0.8199   | 0.9315 | 0.8427  | 0.8333   | 0.8956 |
| 0.4018        | 3.51  | 200  | 0.4802          | 0.8248    | 0.8357 | 0.8249 | 0.8357   | 0.9189 | 0.8736  | 0.8780   | 0.9357 |
| 0.4205        | 3.86  | 220  | 0.4723          | 0.8340    | 0.8389 | 0.8346 | 0.8389   | 0.9189 | 0.8636  | 0.9138   | 0.8986 |
| 0.3535        | 4.21  | 240  | 0.4669          | 0.8324    | 0.8452 | 0.8364 | 0.8452   | 0.9189 | 0.8571  | 0.9138   | 0.9167 |
| 0.3808        | 4.56  | 260  | 0.4585          | 0.8349    | 0.8452 | 0.8383 | 0.8452   | 0.9189 | 0.8621  | 0.9231   | 0.9141 |
| 0.3491        | 4.91  | 280  | 0.4600          | 0.8364    | 0.8452 | 0.8383 | 0.8452   | 0.9189 | 0.8621  | 0.9231   | 0.9141 |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2