File size: 7,808 Bytes
55853a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
---
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
model_format: skops
model_file: model.skops
widget:
structuredData:
x0:
- -0.8513550738681201
- 0.3565756375241982
- -0.5493723960200406
x1:
- -0.9801306786815437
- 0.16144422497410207
- -0.5044744688250247
x2:
- -0.40478372420423153
- 0.465368421656243
- -0.6223217606693501
x3:
- -0.5539725609683268
- 0.3927870023121129
- 1.2133119571551605
x4:
- -0.3313192794050237
- -0.5263980861381337
- 0.14244353694681483
x5:
- -0.6076784605515674
- -0.3021390244014409
- 0.37259389709675395
x6:
- 0.31079384041548314
- -0.11643850592424994
- -0.7648620670356181
x7:
- -0.7921692833892792
- 0.5610338186827566
- -0.707594089509777
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
### Hyperparameters
The model is trained with below hyperparameters.
<details>
<summary> Click to expand </summary>
| Hyperparameter | Value |
|-------------------|---------|
| C | 1.0 |
| class_weight | |
| dual | False |
| fit_intercept | True |
| intercept_scaling | 1 |
| l1_ratio | |
| max_iter | 100 |
| multi_class | auto |
| n_jobs | |
| penalty | l2 |
| random_state | 0 |
| solver | lbfgs |
| tol | 0.0001 |
| verbose | 0 |
| warm_start | False |
</details>
### Model Plot
The model plot is below.
<style>#sk-90f04601-be1b-4c03-ba77-046c22963fb6 {color: black;background-color: white;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 pre{padding: 0;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-toggleable {background-color: white;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-estimator:hover {background-color: #d4ebff;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-item {z-index: 1;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-parallel-item:only-child::after {width: 0;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-text-repr-fallback {display: none;}</style><div id="sk-90f04601-be1b-4c03-ba77-046c22963fb6" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>LogisticRegression(random_state=0)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="0f833999-8370-4e5a-b408-d110b9efa0de" type="checkbox" checked><label for="0f833999-8370-4e5a-b408-d110b9efa0de" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(random_state=0)</pre></div></div></div></div></div>
## Evaluation Results
You can find the details about evaluation process and the evaluation results.
| Metric | Value |
|----------------|----------|
| Train Accuracy | 0.791531 |
| Test Accuracy | 0.714286 |
# How to Get Started with the Model
[More Information Needed]
# Model Card Authors
This model card is written by following authors:
[More Information Needed]
# Model Card Contact
You can contact the model card authors through following channels:
[More Information Needed]
# Citation
Below you can find information related to citation.
**BibTeX:**
```
[More Information Needed]
```
# limitations
Mô hình chưa thể dùng trong production.
# model_description
Regression model thử nghiệm với skops.
|