--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: deit-tiny-patch16-224-finetuned-piid results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: val args: default metrics: - name: Accuracy type: accuracy value: 0.7899543378995434 --- # deit-tiny-patch16-224-finetuned-piid This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5695 - Accuracy: 0.7900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2584 | 0.98 | 20 | 1.1962 | 0.4064 | | 0.7575 | 2.0 | 41 | 0.8537 | 0.6347 | | 0.6732 | 2.98 | 61 | 0.7349 | 0.6758 | | 0.5892 | 4.0 | 82 | 0.6902 | 0.7032 | | 0.5785 | 4.98 | 102 | 0.6303 | 0.7352 | | 0.4276 | 6.0 | 123 | 0.5948 | 0.7397 | | 0.3684 | 6.98 | 143 | 0.6197 | 0.7260 | | 0.3669 | 8.0 | 164 | 0.5451 | 0.7580 | | 0.3391 | 8.98 | 184 | 0.6707 | 0.7352 | | 0.3359 | 10.0 | 205 | 0.5079 | 0.8082 | | 0.3417 | 10.98 | 225 | 0.5678 | 0.7580 | | 0.2714 | 12.0 | 246 | 0.5774 | 0.7443 | | 0.3166 | 12.98 | 266 | 0.5747 | 0.7534 | | 0.2319 | 14.0 | 287 | 0.5598 | 0.7945 | | 0.227 | 14.98 | 307 | 0.5853 | 0.7397 | | 0.1801 | 16.0 | 328 | 0.6237 | 0.7580 | | 0.158 | 16.98 | 348 | 0.5609 | 0.7854 | | 0.199 | 18.0 | 369 | 0.6128 | 0.7443 | | 0.1407 | 18.98 | 389 | 0.5727 | 0.7900 | | 0.1787 | 19.51 | 400 | 0.5695 | 0.7900 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1