update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: t5-small-mlm-pubmed-15
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# t5-small-mlm-pubmed-15
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.5389
|
18 |
+
- Rouge2 Precision: 0.7165
|
19 |
+
- Rouge2 Recall: 0.5375
|
20 |
+
- Rouge2 Fmeasure: 0.5981
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-05
|
40 |
+
- train_batch_size: 16
|
41 |
+
- eval_batch_size: 16
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 40
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|
51 |
+
|:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
|
52 |
+
| 1.1024 | 0.75 | 500 | 0.7890 | 0.6854 | 0.4813 | 0.5502 |
|
53 |
+
| 0.8788 | 1.51 | 1000 | 0.7176 | 0.6906 | 0.4989 | 0.5638 |
|
54 |
+
| 0.8086 | 2.26 | 1500 | 0.6830 | 0.6872 | 0.5052 | 0.5663 |
|
55 |
+
| 0.7818 | 3.02 | 2000 | 0.6650 | 0.6912 | 0.5104 | 0.5711 |
|
56 |
+
| 0.7466 | 3.77 | 2500 | 0.6458 | 0.6965 | 0.5167 | 0.5774 |
|
57 |
+
| 0.731 | 4.52 | 3000 | 0.6355 | 0.6955 | 0.5161 | 0.5763 |
|
58 |
+
| 0.7126 | 5.28 | 3500 | 0.6249 | 0.6924 | 0.517 | 0.576 |
|
59 |
+
| 0.6998 | 6.03 | 4000 | 0.6166 | 0.6995 | 0.5207 | 0.5809 |
|
60 |
+
| 0.6855 | 6.79 | 4500 | 0.6076 | 0.6981 | 0.5215 | 0.5813 |
|
61 |
+
| 0.676 | 7.54 | 5000 | 0.6015 | 0.7003 | 0.5242 | 0.5836 |
|
62 |
+
| 0.6688 | 8.3 | 5500 | 0.5962 | 0.7004 | 0.5235 | 0.583 |
|
63 |
+
| 0.6569 | 9.05 | 6000 | 0.5900 | 0.6997 | 0.5234 | 0.5827 |
|
64 |
+
| 0.6503 | 9.8 | 6500 | 0.5880 | 0.703 | 0.5257 | 0.5856 |
|
65 |
+
| 0.6455 | 10.56 | 7000 | 0.5818 | 0.7008 | 0.5259 | 0.5849 |
|
66 |
+
| 0.635 | 11.31 | 7500 | 0.5796 | 0.7017 | 0.5271 | 0.5861 |
|
67 |
+
| 0.6323 | 12.07 | 8000 | 0.5769 | 0.7053 | 0.5276 | 0.5877 |
|
68 |
+
| 0.6241 | 12.82 | 8500 | 0.5730 | 0.7011 | 0.5243 | 0.5838 |
|
69 |
+
| 0.6224 | 13.57 | 9000 | 0.5696 | 0.7046 | 0.5286 | 0.5879 |
|
70 |
+
| 0.6139 | 14.33 | 9500 | 0.5685 | 0.7047 | 0.5295 | 0.5886 |
|
71 |
+
| 0.6118 | 15.08 | 10000 | 0.5653 | 0.704 | 0.5297 | 0.5886 |
|
72 |
+
| 0.6089 | 15.84 | 10500 | 0.5633 | 0.703 | 0.5272 | 0.5865 |
|
73 |
+
| 0.598 | 16.59 | 11000 | 0.5613 | 0.7059 | 0.5293 | 0.5889 |
|
74 |
+
| 0.6003 | 17.35 | 11500 | 0.5602 | 0.7085 | 0.532 | 0.5918 |
|
75 |
+
| 0.5981 | 18.1 | 12000 | 0.5587 | 0.7106 | 0.5339 | 0.5938 |
|
76 |
+
| 0.5919 | 18.85 | 12500 | 0.5556 | 0.708 | 0.5319 | 0.5914 |
|
77 |
+
| 0.5897 | 19.61 | 13000 | 0.5556 | 0.7106 | 0.5327 | 0.5931 |
|
78 |
+
| 0.5899 | 20.36 | 13500 | 0.5526 | 0.7114 | 0.534 | 0.5939 |
|
79 |
+
| 0.5804 | 21.12 | 14000 | 0.5521 | 0.7105 | 0.5328 | 0.5928 |
|
80 |
+
| 0.5764 | 21.87 | 14500 | 0.5520 | 0.715 | 0.537 | 0.5976 |
|
81 |
+
| 0.5793 | 22.62 | 15000 | 0.5506 | 0.713 | 0.5346 | 0.5951 |
|
82 |
+
| 0.5796 | 23.38 | 15500 | 0.5492 | 0.7124 | 0.5352 | 0.5952 |
|
83 |
+
| 0.5672 | 24.13 | 16000 | 0.5482 | 0.7124 | 0.5346 | 0.5948 |
|
84 |
+
| 0.5737 | 24.89 | 16500 | 0.5470 | 0.7134 | 0.5352 | 0.5956 |
|
85 |
+
| 0.5685 | 25.64 | 17000 | 0.5463 | 0.7117 | 0.5346 | 0.5946 |
|
86 |
+
| 0.5658 | 26.4 | 17500 | 0.5457 | 0.7145 | 0.5359 | 0.5965 |
|
87 |
+
| 0.5657 | 27.15 | 18000 | 0.5447 | 0.7145 | 0.5367 | 0.597 |
|
88 |
+
| 0.5645 | 27.9 | 18500 | 0.5441 | 0.7141 | 0.5362 | 0.5964 |
|
89 |
+
| 0.565 | 28.66 | 19000 | 0.5436 | 0.7151 | 0.5367 | 0.5972 |
|
90 |
+
| 0.5579 | 29.41 | 19500 | 0.5426 | 0.7162 | 0.5378 | 0.5982 |
|
91 |
+
| 0.563 | 30.17 | 20000 | 0.5424 | 0.7155 | 0.5373 | 0.5977 |
|
92 |
+
| 0.556 | 30.92 | 20500 | 0.5418 | 0.7148 | 0.536 | 0.5966 |
|
93 |
+
| 0.5576 | 31.67 | 21000 | 0.5411 | 0.7141 | 0.5356 | 0.5961 |
|
94 |
+
| 0.5546 | 32.43 | 21500 | 0.5409 | 0.7149 | 0.5364 | 0.5967 |
|
95 |
+
| 0.556 | 33.18 | 22000 | 0.5405 | 0.7143 | 0.5356 | 0.596 |
|
96 |
+
| 0.5536 | 33.94 | 22500 | 0.5401 | 0.7165 | 0.5377 | 0.5982 |
|
97 |
+
| 0.5527 | 34.69 | 23000 | 0.5397 | 0.7188 | 0.5389 | 0.5999 |
|
98 |
+
| 0.5531 | 35.44 | 23500 | 0.5395 | 0.7172 | 0.538 | 0.5989 |
|
99 |
+
| 0.5508 | 36.2 | 24000 | 0.5392 | 0.7166 | 0.538 | 0.5985 |
|
100 |
+
| 0.5495 | 36.95 | 24500 | 0.5391 | 0.7176 | 0.5387 | 0.5993 |
|
101 |
+
| 0.5539 | 37.71 | 25000 | 0.5391 | 0.7169 | 0.5372 | 0.598 |
|
102 |
+
| 0.5452 | 38.46 | 25500 | 0.5390 | 0.7179 | 0.5384 | 0.5991 |
|
103 |
+
| 0.5513 | 39.22 | 26000 | 0.5390 | 0.717 | 0.5377 | 0.5984 |
|
104 |
+
| 0.5506 | 39.97 | 26500 | 0.5389 | 0.7165 | 0.5375 | 0.5981 |
|
105 |
+
|
106 |
+
|
107 |
+
### Framework versions
|
108 |
+
|
109 |
+
- Transformers 4.12.5
|
110 |
+
- Pytorch 1.10.0+cu111
|
111 |
+
- Datasets 1.15.1
|
112 |
+
- Tokenizers 0.10.3
|