gayanin commited on
Commit
3ff2996
·
1 Parent(s): 04c9d45

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: bart-paraphrasing-mlm
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # bart-paraphrasing-mlm
14
+
15
+ This model is a fine-tuned version of [gayanin/bart-paraphrase-pubmed-1.1](https://huggingface.co/gayanin/bart-paraphrase-pubmed-1.1) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.5510
18
+ - Rouge2 Precision: 0.7148
19
+ - Rouge2 Recall: 0.5223
20
+ - Rouge2 Fmeasure: 0.5866
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 2e-05
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 4
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
51
+ |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
52
+ | 0.6799 | 1.0 | 13833 | 0.5982 | 0.7016 | 0.5122 | 0.5756 |
53
+ | 0.5894 | 2.0 | 27666 | 0.5663 | 0.7093 | 0.5193 | 0.583 |
54
+ | 0.5329 | 3.0 | 41499 | 0.5540 | 0.7129 | 0.5212 | 0.5853 |
55
+ | 0.4953 | 4.0 | 55332 | 0.5510 | 0.7148 | 0.5223 | 0.5866 |
56
+
57
+
58
+ ### Framework versions
59
+
60
+ - Transformers 4.17.0
61
+ - Pytorch 1.10.0+cu111
62
+ - Datasets 1.18.4
63
+ - Tokenizers 0.11.6