--- tags: - text-regression - emotion - sentiment - emotion intensity language: - unk widget: - text: I'm scared datasets: - SemEval-2018-Task-1-Text-Regression-Task co2_eq_emissions: emissions: 0.17201402406362057 --- # twitter-roberta-base-fear-intensity This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2022-154m on the SemEval 2018 - Task 1 Affect in Tweets (subtask: El-reg / text regression). - Warning: Hosted inference API produces inaccurate values # Model Trained Using AutoTrain - Problem type: Single Column Regression - Model ID: 68748137460 - CO2 Emissions (in grams): 0.1720 ## Validation Metrics - Loss: 0.011 - MSE: 0.011 - MAE: 0.083 - R2: 0.712 - RMSE: 0.107 - Explained Variance: 0.743 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I'm scared"}' https://api-inference.huggingface.co/models/garrettbaber/twitter-roberta-base-fear-intensity ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("garrettbaber/twitter-roberta-base-fear-intensity") tokenizer = AutoTokenizer.from_pretrained("garrettbaber/twitter-roberta-base-fear-intensity") inputs = tokenizer("I'm scared", return_tensors="pt") outputs = model(**inputs) ``` --- citation: | @misc{garrettbaber/twitter-roberta-base-fear-intensity, title={Twitter RoBERTa Base Fear Intensity}, author={Garrett Baber}, year={2023} } ---