Update README.md
Browse files
README.md
CHANGED
@@ -11,6 +11,114 @@ tags: []
|
|
11 |
|
12 |
## Model Details
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
### Model Description
|
15 |
|
16 |
<!-- Provide a longer summary of what this model is. -->
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
+
This my attemp (probably too naive) to reproduce the upcycling process used to initialize [Qwen1.5-MoE-A2.7B](https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B) using [Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B).
|
15 |
+
|
16 |
+
## Upcycling script
|
17 |
+
|
18 |
+
```python
|
19 |
+
from torch import nn
|
20 |
+
from transformers import AutoModelForCausalLM
|
21 |
+
from dataclasses import dataclass
|
22 |
+
from transformers import AutoModel
|
23 |
+
from typing_extensions import Self
|
24 |
+
from copy import deepcopy
|
25 |
+
|
26 |
+
@dataclass
|
27 |
+
class UpcyclingConfig:
|
28 |
+
finegrained_experts: int
|
29 |
+
partitions_from_mlp: int
|
30 |
+
|
31 |
+
@property
|
32 |
+
def upcycling_factor(self) -> int:
|
33 |
+
return self.finegrained_experts // self.partitions_from_mlp
|
34 |
+
|
35 |
+
|
36 |
+
def iterate_in_chunks(list1, list2, chunk_size1, chunk_size2):
|
37 |
+
iterations = max(len(list1) // chunk_size1, len(list2) // chunk_size2)
|
38 |
+
for i in range(iterations):
|
39 |
+
start_idx1 = i * chunk_size1
|
40 |
+
end_idx1 = start_idx1 + chunk_size1
|
41 |
+
start_idx2 = i * chunk_size2
|
42 |
+
end_idx2 = start_idx2 + chunk_size2
|
43 |
+
yield (list1[start_idx1:end_idx1], list2[start_idx2:end_idx2])
|
44 |
+
|
45 |
+
|
46 |
+
def chunk_linear(linear: nn.Linear, chunks: int, down_proj: bool = False) -> tuple[nn.Linear, ...]:
|
47 |
+
if not down_proj:
|
48 |
+
in_features = linear.in_features
|
49 |
+
out_features = linear.out_features // chunks
|
50 |
+
else:
|
51 |
+
in_features = linear.in_features // chunks
|
52 |
+
out_features = linear.out_features
|
53 |
+
|
54 |
+
weights = linear.weight.chunk(chunks)
|
55 |
+
biases = linear.bias.chunk(chunks) if linear.bias is not None else [None] * chunks
|
56 |
+
linear_layers = []
|
57 |
+
for weight, bias in zip(weights, biases):
|
58 |
+
new_linear = nn.Linear(
|
59 |
+
in_features=in_features, out_features=out_features, bias=bias is not None
|
60 |
+
)
|
61 |
+
new_linear.weight = nn.Parameter(weight.clone()) # Clone weights to ensure they are not shared
|
62 |
+
if bias is not None:
|
63 |
+
new_linear.bias = nn.Parameter(bias.clone()) # Clone bias if it exists
|
64 |
+
linear_layers.append(new_linear)
|
65 |
+
return tuple(linear_layers)
|
66 |
+
|
67 |
+
|
68 |
+
class UpcycledModelMixin:
|
69 |
+
sparse_moe_block_cls: type
|
70 |
+
|
71 |
+
@classmethod
|
72 |
+
def upcycled_from(cls, source_model, config: UpcyclingConfig) -> Self:
|
73 |
+
upcycled_model_config = cls.config_class(**source_model.config.to_dict())
|
74 |
+
if hasattr(upcycled_model_config, "shared_expert_intermediate_size"):
|
75 |
+
upcycled_model_config.shared_expert_intermediate_size = source_model.config.intermediate_size
|
76 |
+
|
77 |
+
upcycled_model = cls(upcycled_model_config)
|
78 |
+
upcycled_model.model.embed_tokens = source_model.model.embed_tokens
|
79 |
+
|
80 |
+
for upcycled_layer, layer in zip(upcycled_model.model.layers, source_model.model.layers):
|
81 |
+
upcycled_layer.self_attn = layer.self_attn
|
82 |
+
upcycled_mlp_layers = [deepcopy(layer.mlp) for _ in range(config.upcycling_factor)]
|
83 |
+
|
84 |
+
if hasattr(upcycled_layer.mlp, "shared_expert"):
|
85 |
+
upcycled_layer.mlp.shared_expert = upcycled_mlp_layers.pop(-1)
|
86 |
+
|
87 |
+
for experts, mlp in iterate_in_chunks(upcycled_layer.mlp.experts, upcycled_mlp_layers, 4, 1):
|
88 |
+
gate_projs = chunk_linear(mlp[0].gate_proj, 4, down_proj=False)
|
89 |
+
up_projs = chunk_linear(mlp[0].up_proj, 4, down_proj=False)
|
90 |
+
down_projs = chunk_linear(mlp[0].down_proj, 4, down_proj=True)
|
91 |
+
for i, expert in enumerate(experts):
|
92 |
+
expert.gate_proj = gate_projs[i]
|
93 |
+
expert.up_proj = up_projs[i]
|
94 |
+
expert.down_proj = down_projs[i]
|
95 |
+
expert.act_fn = deepcopy(mlp[0].act_fn)
|
96 |
+
|
97 |
+
upcycled_layer.input_layernorm = layer.input_layernorm
|
98 |
+
upcycled_layer.post_attention_layernorm = layer.post_attention_layernorm
|
99 |
+
|
100 |
+
upcycled_model.lm_head = source_model.lm_head
|
101 |
+
return upcycled_model
|
102 |
+
|
103 |
+
|
104 |
+
from transformers import Qwen2MoeForCausalLM as _Qwen2MoeForCausalLM
|
105 |
+
from transformers.models.qwen2.modeling_qwen2 import Qwen2MLP
|
106 |
+
from transformers.models.qwen2_moe.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock
|
107 |
+
|
108 |
+
class Qwen2MoeForCausalLM(UpcycledModelMixin, _Qwen2MoeForCausalLM):
|
109 |
+
sparse_moe_block_cls = Qwen2MoeSparseMoeBlock
|
110 |
+
|
111 |
+
|
112 |
+
source_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-1.8B")
|
113 |
+
model = Qwen2MoeForCausalLM.upcycled_from(
|
114 |
+
source_model,
|
115 |
+
UpcyclingConfig(
|
116 |
+
finegrained_experts=64,
|
117 |
+
partitions_from_mlp=4,
|
118 |
+
),
|
119 |
+
)
|
120 |
+
```
|
121 |
+
|
122 |
### Model Description
|
123 |
|
124 |
<!-- Provide a longer summary of what this model is. -->
|