--- library_name: transformers license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: mdeberta-domain_fold4 results: [] --- # mdeberta-domain_fold4 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3705 - Accuracy: 0.8552 - Precision: 0.8128 - Recall: 0.8276 - F1: 0.8194 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0349 | 1.0 | 19 | 0.9208 | 0.5931 | 0.8644 | 0.3333 | 0.2482 | | 0.88 | 2.0 | 38 | 0.7011 | 0.5931 | 0.8644 | 0.3333 | 0.2482 | | 0.68 | 3.0 | 57 | 0.6370 | 0.5931 | 0.8644 | 0.3333 | 0.2482 | | 0.6179 | 4.0 | 76 | 0.5360 | 0.8 | 0.6860 | 0.6971 | 0.6459 | | 0.4709 | 5.0 | 95 | 0.3949 | 0.8483 | 0.7967 | 0.7860 | 0.7852 | | 0.3643 | 6.0 | 114 | 0.3526 | 0.8690 | 0.8279 | 0.8209 | 0.8236 | | 0.2901 | 7.0 | 133 | 0.3713 | 0.8690 | 0.8269 | 0.8277 | 0.8242 | | 0.2414 | 8.0 | 152 | 0.3506 | 0.8759 | 0.8394 | 0.8392 | 0.8374 | | 0.1941 | 9.0 | 171 | 0.3766 | 0.8621 | 0.8206 | 0.8391 | 0.8290 | | 0.1977 | 10.0 | 190 | 0.3705 | 0.8552 | 0.8128 | 0.8276 | 0.8194 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.20.1