--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-1B tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - JunxiongWang/sftdataset model-index: - name: 1b_distill_width_prune results: [] --- # 1b_distill_width_prune This model is a fine-tuned version of [meta-llama/Llama-3.2-1B](https://huggingface.co/meta-llama/Llama-3.2-1B) on the JunxiongWang/sftdataset dataset. It achieves the following results on the evaluation set: - Loss: 1.5712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - training_steps: 20000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 1.3657 | 0.0413 | 10000 | 1.7362 | | 1.2947 | 0.0827 | 20000 | 1.5713 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.20.0 - Tokenizers 0.20.3