File size: 1,878 Bytes
96139fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: DIPROMATS_subtask_1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DIPROMATS_subtask_1

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0338
- F1: 0.9893

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2333        | 1.0   | 227  | 0.3143          | 0.8275 |
| 0.2264        | 2.0   | 454  | 0.2628          | 0.8729 |
| 0.2179        | 3.0   | 681  | 0.1320          | 0.9398 |
| 0.1609        | 4.0   | 908  | 0.1025          | 0.9508 |
| 0.1894        | 5.0   | 1135 | 0.0947          | 0.9640 |
| 0.0291        | 6.0   | 1362 | 0.0581          | 0.9793 |
| 0.0075        | 7.0   | 1589 | 0.0633          | 0.9785 |
| 0.1243        | 8.0   | 1816 | 0.0372          | 0.9874 |
| 0.0925        | 9.0   | 2043 | 0.0483          | 0.9851 |
| 0.1582        | 10.0  | 2270 | 0.0338          | 0.9893 |


### Framework versions

- Transformers 4.28.1
- Pytorch 1.13.1
- Datasets 2.12.0
- Tokenizers 0.13.3