nehulagrawal commited on
Commit
a11fed1
·
1 Parent(s): beec64a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -0
README.md ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - web form detection
4
+ - form detection
5
+ - ui form detection
6
+ - form detect
7
+ - ui form detect
8
+
9
+ model-index:
10
+ - name: foduucom/web-form-detection
11
+ results:
12
+ - task:
13
+ type: object-detection
14
+ metrics:
15
+ - type: precision
16
+ value: 0.52196
17
+ name: [email protected](box)
18
+ language:
19
+ - en
20
+ metrics:
21
+ - accuracy
22
+ pipeline_tag: object-detection
23
+ ---
24
+ <div align="center">
25
+ <img width="640" alt="foduucom/web-form-detection" src="https://huggingface.co/foduucom/web-form-detection/resolve/main/Web-Form-Detection%20thumbnail.jpeg">
26
+ </div>
27
+
28
+
29
+
30
+ # Model Overview
31
+ The web-form-Detect model is a yolov8 object detection model trained to detect and locate ui form fields in images. It is built upon the ultralytics library and fine-tuned using a dataset of annotated ui form images.
32
+
33
+ ## Intended Use
34
+ The model is intended to be used for detecting details like Name,number,email,password,button,redio bullet and so on fields in images. It can be incorporated into applications that require automated detection ui form fields from images.
35
+
36
+ ## Performance
37
+ The model has been evaluated on a held-out test dataset and achieved the following performance metrics:
38
+
39
+ Average Precision (AP): 0.51
40
+ Precision: 0.80
41
+ Recall: 0.70
42
+ F1 Score: 0.71
43
+ Please note that the actual performance may vary based on the input data distribution and quality.
44
+
45
+
46
+ ### Recommendations
47
+
48
+ Users should be informed about the model's limitations and potential biases. Further testing and validation are advised for specific use cases to evaluate its performance accurately.
49
+
50
+ Load model and perform prediction:
51
+
52
+ ## How to Get Started with the Model
53
+ To get started with the YOLOv8s object Detection model use for web ui detection, follow these steps:
54
+
55
+
56
+ ```bash
57
+ pip install ultralyticsplus==0.0.28 ultralytics==8.0.43
58
+ ```
59
+
60
+ - Load model and perform prediction:
61
+
62
+ ```python
63
+
64
+ from ultralyticsplus import YOLO, render_result
65
+
66
+ # load model
67
+ model = YOLO('foduucom/web-form-detection')
68
+
69
+ # set model parameters
70
+ model.overrides['conf'] = 0.25 # NMS confidence threshold
71
+ model.overrides['iou'] = 0.45 # NMS IoU threshold
72
+ model.overrides['agnostic_nms'] = False # NMS class-agnostic
73
+ model.overrides['max_det'] = 1000 # maximum number of detections per image
74
+
75
+ # set image
76
+ image = '/path/to/your/document/images'
77
+
78
+ # perform inference
79
+ results = model.predict(image)
80
+
81
+ # observe results
82
+ print(results[0].boxes)
83
+ render = render_result(model=model, image=image, result=results[0])
84
+ render.show()
85
+ ```
86
+
87
+ ## Training Data
88
+ The model was trained on a diverse dataset containing images of web ui form data from different sources, resolutions, and lighting conditions. The dataset was annotated with bounding box coordinates to indicate the location of the ui form fields within the image.
89
+
90
+ Total Number of Images: 600
91
+ Annotation Format: Bounding box coordinates (xmin, ymin, xmax, ymax)
92
+
93
+ ## Fine-tuning Process
94
+ - Pretrained Model: TheError: Errors in your YAML metadata model was initialized with a pretrained object detection backbone (e.g. YOLO).
95
+ - Loss Function: Mean Average Precision (mAP) loss was used for optimization during training.
96
+ - Optimizer: Adam optimizer with a learning rate of 1e-4.
97
+ - Batch Size:-1
98
+ - Training Time: 1 hours on a single NVIDIA GeForce RTX 3090 GPU.
99
+ ## Model Limitations
100
+ The model's performance is subject to variations in image quality, lighting conditions, and image resolutions.
101
+ The model may struggle with detecting web ui form in cases of extreme occlusion.
102
+ The model may not generalize well to non-standard ui form formats or variations.
103
+
104
+ #### Software
105
+
106
+ The model was trained and fine-tuned using a Jupyter Notebook environment.
107
+
108
+ ## Model Card Contact
109
+
110
+ For inquiries and contributions, please contact us at [email protected].
111
+
112
+ ```bibtex
113
+ @ModelCard{
114
+ author = {Nehul Agrawal and
115
+ Rahul parihar},
116
+ title = {YOLOv8s web-form detection},
117
+ year = {2023}
118
+ }
119
+ ```
120
+
121
+ ---