flyingfishinwater commited on
Commit
b76b053
·
verified ·
1 Parent(s): 2bcb8f4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +259 -130
README.md CHANGED
@@ -1,14 +1,23 @@
1
  # LiteLlama
2
 
3
- It's a very small LLAMA2 model with only 460M parameters trained with 1T tokens. It's best for testing.
4
- **Model Intention:** This is a 460 parameters' very small model for test purpose only
5
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/LiteLlama-460M-1T-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/LiteLlama-460M-1T-Q8_0.gguf?download=true)
6
- **Model Info URL:** [https://huggingface.co/ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T)
7
- **Model License:** [License Info](https://ai.meta.com/llama/license/)
8
- **Model Description:** It's a very small LLAMA2 model with only 460M parameters trained with 1T tokens. It's best for testing.
9
- **Developer:** [https://huggingface.co/ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T)
10
- **File Size:** 493 MB
11
- **Context Length:** 1024 tokens
 
 
 
 
 
 
 
 
 
12
  **Prompt Format:**
13
 
14
  ```
@@ -16,96 +25,148 @@ It's a very small LLAMA2 model with only 460M parameters trained with 1T tokens.
16
  <bot>:
17
  ```
18
 
19
- **Template Name:** TinyLlama
20
- **Add BOS Token:** Yes
21
- **Add EOS Token:** No
22
- **Parse Special Tokens:** Yes
 
 
 
 
23
 
24
  ---
25
 
26
  # TinyLlama-1.1B-chat
27
 
28
- The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of just 90 days using 16 A100-40G GPUs. The training has started on 2023-09-01.
29
- **Model Intention:** It's good for question & answer.
30
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/tinyllama-1.1B-chat-v1.0-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/tinyllama-1.1B-chat-v1.0-Q8_0.gguf?download=true)
31
- **Model Info URL:** [https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
32
- **Model License:** [License Info](https://ai.meta.com/llama/license/)
33
- **Model Description:** The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of just 90 days using 16 A100-40G GPUs. The training has started on 2023-09-01.
34
- **Developer:** [https://github.com/jzhang38/TinyLlama](https://github.com/jzhang38/TinyLlama)
35
- **File Size:** 1170 MB
36
- **Context Length:** 4096 tokens
 
 
 
 
 
 
 
 
 
37
  **Prompt Format:**
38
 
39
  ```
40
  <|system|>You are a friendly chatbot who always responds in the style of a pirate.</s><|user|>{{prompt}}</s><|assistant|>
41
  ```
42
 
43
- **Template Name:** TinyLlama
44
- **Add BOS Token:** Yes
45
- **Add EOS Token:** No
46
- **Parse Special Tokens:** Yes
 
 
 
 
47
 
48
  ---
49
 
50
  # Mistral 7B v0.2
51
 
52
- The Mistral-7B-v0.2 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.2 outperforms Llama 2 13B on all benchmarks we tested.
53
- **Model Intention:** It's a 7B large model for Q&A purpose. But it requires a high-end device to run.
54
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true)
55
- **Model Info URL:** [https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
56
- **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
57
- **Model Description:** The Mistral-7B-v0.2 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.2 outperforms Llama 2 13B on all benchmarks we tested.
58
- **Developer:** [https://mistral.ai/](https://mistral.ai/)
59
- **File Size:** 7695 MB
60
- **Context Length:** 4096 tokens
 
 
 
 
 
 
 
 
 
61
  **Prompt Format:**
62
 
63
  ```
64
  <s>[INST]{{prompt}}[/INST]</s>
65
  ```
66
 
67
- **Template Name:** Mistral
68
- **Add BOS Token:** Yes
69
- **Add EOS Token:** No
70
- **Parse Special Tokens:** Yes
 
 
 
 
71
 
72
  ---
73
 
74
  # OpenChat 3.5
75
 
76
- OpenChat is an innovative library of open-source language models, fine-tuned with C-RLFT - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.
77
- **Model Intention:** It's a 7B large model and performs really good for Q&A. But it requires a high-end device to run.
78
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/openchat-3.5-1210.Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/openchat-3.5-1210.Q8_0.gguf?download=true)
79
- **Model Info URL:** [https://huggingface.co/openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5)
80
- **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
81
- **Model Description:** OpenChat is an innovative library of open-source language models, fine-tuned with C-RLFT - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.
82
- **Developer:** [https://openchat.team/](https://openchat.team/)
83
- **File Size:** 7695 MB
84
- **Context Length:** 4096 tokens
 
 
 
 
 
 
 
 
 
85
  **Prompt Format:**
86
 
87
  ```
88
  <s>[INST]{{prompt}}[/INST]</s>
89
  ```
90
 
91
- **Template Name:** Mistral
92
- **Add BOS Token:** Yes
93
- **Add EOS Token:** No
94
- **Parse Special Tokens:** Yes
 
 
 
 
95
 
96
  ---
97
 
98
  # Phi-2
99
 
100
- Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.
101
- **Model Intention:** It's a 2.7B model and is intended for QA, chat, and code purposes
102
- **Model URL:** [https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true](https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true)
103
- **Model Info URL:** [https://huggingface.co/microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
104
- **Model License:** [License Info](https://opensource.org/license/mit)
105
- **Model Description:** Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.
106
- **Developer:** [https://huggingface.co/microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
107
- **File Size:** 2960 MB
108
- **Context Length:** 4096 tokens
 
 
 
 
 
 
 
 
 
109
  **Prompt Format:**
110
 
111
  ```
@@ -113,24 +174,37 @@ Instruct: {{prompt}}
113
  Output:
114
  ```
115
 
116
- **Template Name:** PHI
117
- **Add BOS Token:** Yes
118
- **Add EOS Token:** No
119
- **Parse Special Tokens:** Yes
 
 
 
 
120
 
121
  ---
122
 
123
  # Yi 6B Chat
124
 
125
- The Yi series models are the next generation of open-source large language models trained from scratch by 01.AI. Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example, For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the AlpacaEval Leaderboard in Dec 2023. For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the SuperCLUE in Oct 2023.
126
- **Model Intention:** It's a 6B model and can understand English and Chinese. It's good for QA and Chat
127
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/yi-6b-chat-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/yi-6b-chat-Q8_0.gguf?download=true)
128
- **Model Info URL:** [https://huggingface.co/01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
129
- **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
130
- **Model Description:** The Yi series models are the next generation of open-source large language models trained from scratch by 01.AI. Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example, For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the AlpacaEval Leaderboard in Dec 2023. For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the SuperCLUE in Oct 2023.
131
- **Developer:** [https://01.ai/](https://01.ai/)
132
- **File Size:** 6440 MB
133
- **Context Length:** 200000 tokens
 
 
 
 
 
 
 
 
 
134
  **Prompt Format:**
135
 
136
  ```
@@ -141,24 +215,37 @@ The Yi series models are the next generation of open-source large language model
141
 
142
  ```
143
 
144
- **Template Name:** yi
145
- **Add BOS Token:** Yes
146
- **Add EOS Token:** No
147
- **Parse Special Tokens:** Yes
 
 
 
 
148
 
149
  ---
150
 
151
  # Google Gemma 2B
152
 
153
- Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is named after the Latin gemma, meaning 'precious stone.' The Gemma model weights are supported by developer tools that promote innovation, collaboration, and the responsible use of artificial intelligence (AI).
154
- **Model Intention:** It's a 2B large model for Q&A purpose. But it requires a high-end device to run.
155
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/gemma-2b-it-q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/gemma-2b-it-q8_0.gguf?download=true)
156
- **Model Info URL:** [https://huggingface.co/google/gemma-2b](https://huggingface.co/google/gemma-2b)
157
- **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
158
- **Model Description:** Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is named after the Latin gemma, meaning 'precious stone.' The Gemma model weights are supported by developer tools that promote innovation, collaboration, and the responsible use of artificial intelligence (AI).
159
- **Developer:** [https://huggingface.co/google](https://huggingface.co/google)
160
- **File Size:** 2669 MB
161
- **Context Length:** 8192 tokens
 
 
 
 
 
 
 
 
 
162
  **Prompt Format:**
163
 
164
  ```
@@ -168,24 +255,37 @@ Gemma is a family of lightweight, state-of-the-art open models built from the sa
168
 
169
  ```
170
 
171
- **Template Name:** gemma
172
- **Add BOS Token:** Yes
173
- **Add EOS Token:** No
174
- **Parse Special Tokens:** Yes
 
 
 
 
175
 
176
  ---
177
 
178
  # StarCoder2 3B
179
 
180
- StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens
181
- **Model Intention:** The model is good at 17 programming languages. It can help you resolve programming requirements
182
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/starcoder2-3b-instruct-gguf_Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/starcoder2-3b-instruct-gguf_Q8_0.gguf?download=true)
183
- **Model Info URL:** [https://huggingface.co/bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b)
184
- **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
185
- **Model Description:** StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens
186
- **Developer:** [https://www.bigcode-project.org/](https://www.bigcode-project.org/)
187
- **File Size:** 3220 MB
188
- **Context Length:** 8192 tokens
 
 
 
 
 
 
 
 
 
189
  **Prompt Format:**
190
 
191
  ```
@@ -194,24 +294,37 @@ StarCoder2-3B model is a 3B parameter model trained on 17 programming languages
194
 
195
  ```
196
 
197
- **Template Name:** starcoder
198
- **Add BOS Token:** Yes
199
- **Add EOS Token:** No
200
- **Parse Special Tokens:** Yes
 
 
 
 
201
 
202
  ---
203
 
204
  # Chinese Tiny LLM 2B
205
 
206
- Chinese Tiny LLM 2B 是首个以中文为中心的大型语言模型,主要在中文语料库上进行预训练和微调,提供了对潜在偏见、中文语言能力和多语言适应性的重要洞见。
207
- **Model Intention:** 这是一个参数规模2B的中文模型,具有很好的中文理解和应答能力
208
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/chinese-tiny-llm-2b-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/chinese-tiny-llm-2b-Q8_0.gguf?download=true)
209
- **Model Info URL:** [https://chinese-tiny-llm.github.io/](https://chinese-tiny-llm.github.io/)
210
- **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
211
- **Model Description:** Chinese Tiny LLM 2B 是首个以中文为中心的大型语言模型,主要在中文语料库上进行预训练和微调,提供了对潜在偏见、中文语言能力和多语言适应性的重要洞见。
212
- **Developer:** [https://m-a-p.ai/](https://m-a-p.ai/)
213
- **File Size:** 2218 MB
214
- **Context Length:** 4096 tokens
 
 
 
 
 
 
 
 
 
215
  **Prompt Format:**
216
 
217
  ```
@@ -222,24 +335,37 @@ Chinese Tiny LLM 2B 是首个以中文为中心的大型语言模型,主要在
222
 
223
  ```
224
 
225
- **Template Name:** chatml
226
- **Add BOS Token:** Yes
227
- **Add EOS Token:** No
228
- **Parse Special Tokens:** Yes
 
 
 
 
229
 
230
  ---
231
 
232
  # Dophin 2.8 Mistralv02 7B
233
 
234
- This model is based on Mistral-7b-v0.2 with 16k context lengths. It's a uncensored model and supports a variety of instruction, conversational, and coding skills.
235
- **Model Intention:** It's a uncensored and good skilled English modal best for high performance iPhone, iPad & Mac
236
- **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/dolphin-2.8-mistral-7b-v02-Q2_K.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/dolphin-2.8-mistral-7b-v02-Q2_K.gguf?download=true)
237
- **Model Info URL:** [https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02](https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02)
238
- **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
239
- **Model Description:** This model is based on Mistral-7b-v0.2 with 16k context lengths. It's a uncensored model and supports a variety of instruction, conversational, and coding skills.
240
- **Developer:** [https://erichartford.com/](https://erichartford.com/)
241
- **File Size:** 2728 MB
242
- **Context Length:** 16384 tokens
 
 
 
 
 
 
 
 
 
243
  **Prompt Format:**
244
 
245
  ```
@@ -250,7 +376,10 @@ This model is based on Mistral-7b-v0.2 with 16k context lengths. It's a uncensor
250
 
251
  ```
252
 
253
- **Template Name:** chatml
254
- **Add BOS Token:** Yes
255
- **Add EOS Token:** No
256
- **Parse Special Tokens:** Yes
 
 
 
 
1
  # LiteLlama
2
 
3
+ It's a very small LLAMA2 model with only 460M parameters trained with 1T tokens. It's best for testing.
4
+
5
+ **Model Intention:** This is a 460 parameters' very small model for test purpose only
6
+
7
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/LiteLlama-460M-1T-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/LiteLlama-460M-1T-Q8_0.gguf?download=true)
8
+
9
+ **Model Info URL:** [https://huggingface.co/ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T)
10
+
11
+ **Model License:** [License Info](https://ai.meta.com/llama/license/)
12
+
13
+ **Model Description:** It's a very small LLAMA2 model with only 460M parameters trained with 1T tokens. It's best for testing.
14
+
15
+ **Developer:** [https://huggingface.co/ahxt/LiteLlama-460M-1T](https://huggingface.co/ahxt/LiteLlama-460M-1T)
16
+
17
+ **File Size:** 493 MB
18
+
19
+ **Context Length:** 1024 tokens
20
+
21
  **Prompt Format:**
22
 
23
  ```
 
25
  <bot>:
26
  ```
27
 
28
+ **Template Name:** TinyLlama
29
+
30
+ **Add BOS Token:** Yes
31
+
32
+ **Add EOS Token:** No
33
+
34
+ **Parse Special Tokens:** Yes
35
+
36
 
37
  ---
38
 
39
  # TinyLlama-1.1B-chat
40
 
41
+ The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of just 90 days using 16 A100-40G GPUs. The training has started on 2023-09-01.
42
+
43
+ **Model Intention:** It's good for question & answer.
44
+
45
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/tinyllama-1.1B-chat-v1.0-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/tinyllama-1.1B-chat-v1.0-Q8_0.gguf?download=true)
46
+
47
+ **Model Info URL:** [https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
48
+
49
+ **Model License:** [License Info](https://ai.meta.com/llama/license/)
50
+
51
+ **Model Description:** The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of just 90 days using 16 A100-40G GPUs. The training has started on 2023-09-01.
52
+
53
+ **Developer:** [https://github.com/jzhang38/TinyLlama](https://github.com/jzhang38/TinyLlama)
54
+
55
+ **File Size:** 1170 MB
56
+
57
+ **Context Length:** 4096 tokens
58
+
59
  **Prompt Format:**
60
 
61
  ```
62
  <|system|>You are a friendly chatbot who always responds in the style of a pirate.</s><|user|>{{prompt}}</s><|assistant|>
63
  ```
64
 
65
+ **Template Name:** TinyLlama
66
+
67
+ **Add BOS Token:** Yes
68
+
69
+ **Add EOS Token:** No
70
+
71
+ **Parse Special Tokens:** Yes
72
+
73
 
74
  ---
75
 
76
  # Mistral 7B v0.2
77
 
78
+ The Mistral-7B-v0.2 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.2 outperforms Llama 2 13B on all benchmarks we tested.
79
+
80
+ **Model Intention:** It's a 7B large model for Q&A purpose. But it requires a high-end device to run.
81
+
82
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/mistral-7b-instruct-v0.2.Q8_0.gguf?download=true)
83
+
84
+ **Model Info URL:** [https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
85
+
86
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
87
+
88
+ **Model Description:** The Mistral-7B-v0.2 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.2 outperforms Llama 2 13B on all benchmarks we tested.
89
+
90
+ **Developer:** [https://mistral.ai/](https://mistral.ai/)
91
+
92
+ **File Size:** 7695 MB
93
+
94
+ **Context Length:** 4096 tokens
95
+
96
  **Prompt Format:**
97
 
98
  ```
99
  <s>[INST]{{prompt}}[/INST]</s>
100
  ```
101
 
102
+ **Template Name:** Mistral
103
+
104
+ **Add BOS Token:** Yes
105
+
106
+ **Add EOS Token:** No
107
+
108
+ **Parse Special Tokens:** Yes
109
+
110
 
111
  ---
112
 
113
  # OpenChat 3.5
114
 
115
+ OpenChat is an innovative library of open-source language models, fine-tuned with C-RLFT - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.
116
+
117
+ **Model Intention:** It's a 7B large model and performs really good for Q&A. But it requires a high-end device to run.
118
+
119
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/openchat-3.5-1210.Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/openchat-3.5-1210.Q8_0.gguf?download=true)
120
+
121
+ **Model Info URL:** [https://huggingface.co/openchat/openchat_3.5](https://huggingface.co/openchat/openchat_3.5)
122
+
123
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
124
+
125
+ **Model Description:** OpenChat is an innovative library of open-source language models, fine-tuned with C-RLFT - a strategy inspired by offline reinforcement learning. Our models learn from mixed-quality data without preference labels, delivering exceptional performance on par with ChatGPT, even with a 7B model. Despite our simple approach, we are committed to developing a high-performance, commercially viable, open-source large language model, and we continue to make significant strides toward this vision.
126
+
127
+ **Developer:** [https://openchat.team/](https://openchat.team/)
128
+
129
+ **File Size:** 7695 MB
130
+
131
+ **Context Length:** 4096 tokens
132
+
133
  **Prompt Format:**
134
 
135
  ```
136
  <s>[INST]{{prompt}}[/INST]</s>
137
  ```
138
 
139
+ **Template Name:** Mistral
140
+
141
+ **Add BOS Token:** Yes
142
+
143
+ **Add EOS Token:** No
144
+
145
+ **Parse Special Tokens:** Yes
146
+
147
 
148
  ---
149
 
150
  # Phi-2
151
 
152
+ Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.
153
+
154
+ **Model Intention:** It's a 2.7B model and is intended for QA, chat, and code purposes
155
+
156
+ **Model URL:** [https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true](https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q8_0.gguf?download=true)
157
+
158
+ **Model Info URL:** [https://huggingface.co/microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
159
+
160
+ **Model License:** [License Info](https://opensource.org/license/mit)
161
+
162
+ **Model Description:** Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.
163
+
164
+ **Developer:** [https://huggingface.co/microsoft/phi-2](https://huggingface.co/microsoft/phi-2)
165
+
166
+ **File Size:** 2960 MB
167
+
168
+ **Context Length:** 4096 tokens
169
+
170
  **Prompt Format:**
171
 
172
  ```
 
174
  Output:
175
  ```
176
 
177
+ **Template Name:** PHI
178
+
179
+ **Add BOS Token:** Yes
180
+
181
+ **Add EOS Token:** No
182
+
183
+ **Parse Special Tokens:** Yes
184
+
185
 
186
  ---
187
 
188
  # Yi 6B Chat
189
 
190
+ The Yi series models are the next generation of open-source large language models trained from scratch by 01.AI. Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example, For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the AlpacaEval Leaderboard in Dec 2023. For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the SuperCLUE in Oct 2023.
191
+
192
+ **Model Intention:** It's a 6B model and can understand English and Chinese. It's good for QA and Chat
193
+
194
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/yi-6b-chat-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/yi-6b-chat-Q8_0.gguf?download=true)
195
+
196
+ **Model Info URL:** [https://huggingface.co/01-ai/Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat)
197
+
198
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
199
+
200
+ **Model Description:** The Yi series models are the next generation of open-source large language models trained from scratch by 01.AI. Targeted as a bilingual language model and trained on 3T multilingual corpus, the Yi series models become one of the strongest LLM worldwide, showing promise in language understanding, commonsense reasoning, reading comprehension, and more. For example, For English language capability, the Yi series models ranked 2nd (just behind GPT-4), outperforming other LLMs (such as LLaMA2-chat-70B, Claude 2, and ChatGPT) on the AlpacaEval Leaderboard in Dec 2023. For Chinese language capability, the Yi series models landed in 2nd place (following GPT-4), surpassing other LLMs (such as Baidu ERNIE, Qwen, and Baichuan) on the SuperCLUE in Oct 2023.
201
+
202
+ **Developer:** [https://01.ai/](https://01.ai/)
203
+
204
+ **File Size:** 6440 MB
205
+
206
+ **Context Length:** 200000 tokens
207
+
208
  **Prompt Format:**
209
 
210
  ```
 
215
 
216
  ```
217
 
218
+ **Template Name:** yi
219
+
220
+ **Add BOS Token:** Yes
221
+
222
+ **Add EOS Token:** No
223
+
224
+ **Parse Special Tokens:** Yes
225
+
226
 
227
  ---
228
 
229
  # Google Gemma 2B
230
 
231
+ Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is named after the Latin gemma, meaning 'precious stone.' The Gemma model weights are supported by developer tools that promote innovation, collaboration, and the responsible use of artificial intelligence (AI).
232
+
233
+ **Model Intention:** It's a 2B large model for Q&A purpose. But it requires a high-end device to run.
234
+
235
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/gemma-2b-it-q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/gemma-2b-it-q8_0.gguf?download=true)
236
+
237
+ **Model Info URL:** [https://huggingface.co/google/gemma-2b](https://huggingface.co/google/gemma-2b)
238
+
239
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
240
+
241
+ **Model Description:** Gemma is a family of lightweight, state-of-the-art open models built from the same research and technology used to create the Gemini models. Developed by Google DeepMind and other teams across Google, Gemma is named after the Latin gemma, meaning 'precious stone.' The Gemma model weights are supported by developer tools that promote innovation, collaboration, and the responsible use of artificial intelligence (AI).
242
+
243
+ **Developer:** [https://huggingface.co/google](https://huggingface.co/google)
244
+
245
+ **File Size:** 2669 MB
246
+
247
+ **Context Length:** 8192 tokens
248
+
249
  **Prompt Format:**
250
 
251
  ```
 
255
 
256
  ```
257
 
258
+ **Template Name:** gemma
259
+
260
+ **Add BOS Token:** Yes
261
+
262
+ **Add EOS Token:** No
263
+
264
+ **Parse Special Tokens:** Yes
265
+
266
 
267
  ---
268
 
269
  # StarCoder2 3B
270
 
271
+ StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens
272
+
273
+ **Model Intention:** The model is good at 17 programming languages. It can help you resolve programming requirements
274
+
275
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/starcoder2-3b-instruct-gguf_Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/starcoder2-3b-instruct-gguf_Q8_0.gguf?download=true)
276
+
277
+ **Model Info URL:** [https://huggingface.co/bigcode/starcoder2-3b](https://huggingface.co/bigcode/starcoder2-3b)
278
+
279
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
280
+
281
+ **Model Description:** StarCoder2-3B model is a 3B parameter model trained on 17 programming languages from The Stack v2, with opt-out requests excluded. The model uses Grouped Query Attention, a context window of 16,384 tokens with a sliding window attention of 4,096 tokens, and was trained using the Fill-in-the-Middle objective on 3+ trillion tokens
282
+
283
+ **Developer:** [https://www.bigcode-project.org/](https://www.bigcode-project.org/)
284
+
285
+ **File Size:** 3220 MB
286
+
287
+ **Context Length:** 8192 tokens
288
+
289
  **Prompt Format:**
290
 
291
  ```
 
294
 
295
  ```
296
 
297
+ **Template Name:** starcoder
298
+
299
+ **Add BOS Token:** Yes
300
+
301
+ **Add EOS Token:** No
302
+
303
+ **Parse Special Tokens:** Yes
304
+
305
 
306
  ---
307
 
308
  # Chinese Tiny LLM 2B
309
 
310
+ Chinese Tiny LLM 2B 是首个以中文为中心的大型语言模型,主要在中文语料库上进行预训练和微调,提供了对潜在偏见、中文语言能力和多语言适应性的重要洞见。
311
+
312
+ **Model Intention:** 这是一个参数规模2B的中文模型,具有很好的中文理解和应答能力
313
+
314
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/chinese-tiny-llm-2b-Q8_0.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/chinese-tiny-llm-2b-Q8_0.gguf?download=true)
315
+
316
+ **Model Info URL:** [https://chinese-tiny-llm.github.io/](https://chinese-tiny-llm.github.io/)
317
+
318
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
319
+
320
+ **Model Description:** Chinese Tiny LLM 2B 是首个以中文为中心的大型语言模型,主要在中文语料库上进行预训练和微调,提供了对潜在偏见、中文语言能力和多语言适应性的重要洞见。
321
+
322
+ **Developer:** [https://m-a-p.ai/](https://m-a-p.ai/)
323
+
324
+ **File Size:** 2218 MB
325
+
326
+ **Context Length:** 4096 tokens
327
+
328
  **Prompt Format:**
329
 
330
  ```
 
335
 
336
  ```
337
 
338
+ **Template Name:** chatml
339
+
340
+ **Add BOS Token:** Yes
341
+
342
+ **Add EOS Token:** No
343
+
344
+ **Parse Special Tokens:** Yes
345
+
346
 
347
  ---
348
 
349
  # Dophin 2.8 Mistralv02 7B
350
 
351
+ This model is based on Mistral-7b-v0.2 with 16k context lengths. It's a uncensored model and supports a variety of instruction, conversational, and coding skills.
352
+
353
+ **Model Intention:** It's a uncensored and good skilled English modal best for high performance iPhone, iPad & Mac
354
+
355
+ **Model URL:** [https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/dolphin-2.8-mistral-7b-v02-Q2_K.gguf?download=true](https://huggingface.co/flyingfishinwater/goodmodels/resolve/main/dolphin-2.8-mistral-7b-v02-Q2_K.gguf?download=true)
356
+
357
+ **Model Info URL:** [https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02](https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02)
358
+
359
+ **Model License:** [License Info](https://www.apache.org/licenses/LICENSE-2.0)
360
+
361
+ **Model Description:** This model is based on Mistral-7b-v0.2 with 16k context lengths. It's a uncensored model and supports a variety of instruction, conversational, and coding skills.
362
+
363
+ **Developer:** [https://erichartford.com/](https://erichartford.com/)
364
+
365
+ **File Size:** 2728 MB
366
+
367
+ **Context Length:** 16384 tokens
368
+
369
  **Prompt Format:**
370
 
371
  ```
 
376
 
377
  ```
378
 
379
+ **Template Name:** chatml
380
+
381
+ **Add BOS Token:** Yes
382
+
383
+ **Add EOS Token:** No
384
+
385
+ **Parse Special Tokens:** Yes