Santiago
commited on
Commit
·
98c1ffc
1
Parent(s):
69cfc30
rebase
Browse files- README.md +43 -0
- prepare_data.py +0 -141
- requirements.txt +0 -8
- run_medclip.py +94 -100
- src/__pycache__/__init__.cpython-38.pyc +0 -0
- src/__pycache__/configuration_medclip.cpython-38.pyc +0 -0
- src/__pycache__/datasets_medclip.cpython-38.pyc +0 -0
- src/__pycache__/modeling_medclip.cpython-38.pyc +0 -0
- src/configuration_medclip.py +9 -9
- src/datasets_medclip.py +182 -0
- src/modeling_medclip.py +12 -12
- tasks/prepare_roco.py +43 -0
- train_model.sh +13 -10
README.md
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
license: Apache 2.0
|
7 |
+
---
|
8 |
+
|
9 |
+
# MedCLIP
|
10 |
+
|
11 |
+
## Model description
|
12 |
+
|
13 |
+
|
14 |
+
## Intended uses & limitations
|
15 |
+
|
16 |
+
#### How to use
|
17 |
+
|
18 |
+
```python
|
19 |
+
# You can include sample code which will be formatted
|
20 |
+
```
|
21 |
+
|
22 |
+
#### Limitations and bias
|
23 |
+
|
24 |
+
Provide examples of latent issues and potential remediations.
|
25 |
+
|
26 |
+
## Training data
|
27 |
+
|
28 |
+
Describe the data you used to train the model.
|
29 |
+
If you initialized it with pre-trained weights, add a link to the pre-trained model card or repository with description of the pre-training data.
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
Preprocessing, hardware used, hyperparameters...
|
34 |
+
|
35 |
+
## Eval results
|
36 |
+
|
37 |
+
### BibTeX entry and citation info
|
38 |
+
|
39 |
+
```bibtex
|
40 |
+
@inproceedings{...,
|
41 |
+
year={2020}
|
42 |
+
}
|
43 |
+
```
|
prepare_data.py
DELETED
@@ -1,141 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
from typing import Dict, List1
|
5 |
-
|
6 |
-
import argparse
|
7 |
-
import json
|
8 |
-
from functools import partial
|
9 |
-
import pathlib
|
10 |
-
import shutil
|
11 |
-
import re
|
12 |
-
|
13 |
-
from tqdm import tqdm
|
14 |
-
from PIL import Image
|
15 |
-
import pandas as pd
|
16 |
-
|
17 |
-
ImageCaptionMap = Dict[str, Dict[str, str]]
|
18 |
-
|
19 |
-
def _get_image_path(row: pd.Series, root_dir: str = '.') -> str:
|
20 |
-
path = [
|
21 |
-
root_dir,
|
22 |
-
'files',
|
23 |
-
f'p{row.subject_id}'[:3],
|
24 |
-
f'p{row.subject_id}',
|
25 |
-
f's{row.study_id}',
|
26 |
-
f'{row.dicom_id}.jpg'
|
27 |
-
]
|
28 |
-
|
29 |
-
return '/'.join(path)
|
30 |
-
|
31 |
-
def _prepare_dataframe(
|
32 |
-
captions: pd.DataFrame,
|
33 |
-
metadata: pd.DataFrame,
|
34 |
-
row: pd.Series
|
35 |
-
) -> pd.Series:
|
36 |
-
if f's{row.study_id}' in captions.index:
|
37 |
-
row[captions.columns] = (
|
38 |
-
captions
|
39 |
-
.loc[f's{row.study_id}']
|
40 |
-
.apply(lambda text: (
|
41 |
-
re.sub('_+', '_', text)
|
42 |
-
.replace('\n', ' ')
|
43 |
-
.lower().rstrip('.')
|
44 |
-
))
|
45 |
-
)
|
46 |
-
|
47 |
-
if row.dicom_id in metadata.index:
|
48 |
-
row['view_position'] = metadata.loc[row.dicom_id, 'ViewPosition']
|
49 |
-
|
50 |
-
return row
|
51 |
-
|
52 |
-
def copy_image(
|
53 |
-
row: pd.Series,
|
54 |
-
target_path: pathlib.Path,
|
55 |
-
split: str,
|
56 |
-
size: int = 224
|
57 |
-
) -> str:
|
58 |
-
target_img_path = target_path / split / f'{row.dicom_id}.jpg'
|
59 |
-
target_img_path = str(target_img_path.resolve())
|
60 |
-
|
61 |
-
img = Image.open(row.path)
|
62 |
-
img = img.resize((size, size))
|
63 |
-
img.save(target_img_path)
|
64 |
-
|
65 |
-
return target_img_path
|
66 |
-
|
67 |
-
def generate_dataset(
|
68 |
-
root_dir: pathlib.Path,
|
69 |
-
target_dir: pathlib.Path,
|
70 |
-
split: str = 'validate'
|
71 |
-
) -> ImageCaptionMap:
|
72 |
-
meta_dir = root_dir / 'metadata'
|
73 |
-
|
74 |
-
metadata = pd.read_csv(meta_dir / 'mimic-cxr-2.0.0-metadata.csv')
|
75 |
-
df_split = pd.read_csv(meta_dir / 'mimic-cxr-2.0.0-split.csv')
|
76 |
-
captions = pd.read_csv(meta_dir / 'mimic_cxr_sectioned.csv')
|
77 |
-
|
78 |
-
captions = captions.where(~captions.isna(), '').set_index('study')
|
79 |
-
metadata = metadata.set_index('dicom_id')
|
80 |
-
|
81 |
-
if split in df_split.split.unique():
|
82 |
-
current_split = df_split[df_split.split == split]
|
83 |
-
get_abs_path = partial(_get_image_path, root_dir=str(root_dir.resolve()))
|
84 |
-
|
85 |
-
current_split['path'] = current_split.apply(get_abs_path, axis=1)
|
86 |
-
current_split['view_position'] = ''
|
87 |
-
for col in captions.columns:
|
88 |
-
current_split[col] = ''
|
89 |
-
|
90 |
-
preprocess_func = partial(_prepare_dataframe, captions, metadata)
|
91 |
-
|
92 |
-
df = current_split.apply(preprocess_func, axis=1)
|
93 |
-
|
94 |
-
else:
|
95 |
-
raise ValueError('bad split')
|
96 |
-
|
97 |
-
image_path_to_caption = {}
|
98 |
-
(target_dir / split).mkdir(exist_ok=True, parents=True)
|
99 |
-
|
100 |
-
for _, element in tqdm(df.iterrows()):
|
101 |
-
caption = {
|
102 |
-
'impression': element['impression'],
|
103 |
-
'findings': element['findings'],
|
104 |
-
'last_paragraph': element['last_paragraph'],
|
105 |
-
'comparison': element['comparison'],
|
106 |
-
'view_position': element['view_position'],
|
107 |
-
}
|
108 |
-
|
109 |
-
image_path = copy_image(element, target_dir, split)
|
110 |
-
|
111 |
-
image_path_to_caption[image_path] = caption
|
112 |
-
|
113 |
-
return image_path_to_caption
|
114 |
-
|
115 |
-
def dump_dataset(image_path_to_caption: ImageCaptionMap) -> List[str]:
|
116 |
-
lines = []
|
117 |
-
|
118 |
-
for image_path, captions in image_path_to_caption.items():
|
119 |
-
lines.append(json.dumps({
|
120 |
-
'image_path': image_path,
|
121 |
-
'caption': captions,
|
122 |
-
}))
|
123 |
-
|
124 |
-
return lines
|
125 |
-
|
126 |
-
if __name__ == '__main__':
|
127 |
-
parser = argparse.ArgumentParser(description='Preprocess MIMIC-CXR dataset')
|
128 |
-
parser.add_argument('--data_dir', description='MIMIC-CXR path')
|
129 |
-
parser.add_argument('--target_dir', description='output path')
|
130 |
-
|
131 |
-
args = parser.parse_args()
|
132 |
-
|
133 |
-
data_dir = pathlib.Path(args.data_dir)
|
134 |
-
target_dir = pathlib.Path(args.target_dir)
|
135 |
-
|
136 |
-
for split in ['test', 'validate', 'train']:
|
137 |
-
image_path_to_caption = generate_dataset(data_dir, target_dir, split)
|
138 |
-
lines = dump_dataset(image_path_to_caption)
|
139 |
-
|
140 |
-
with open(target_dir / f'{split}_dataset.json', 'w') as f:
|
141 |
-
f.write('\n'.join(lines))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
jax>=0.2.8
|
2 |
-
jaxlib>=0.1.59
|
3 |
-
flax>=0.3.4
|
4 |
-
optax>=0.0.8
|
5 |
-
-f https://download.pytorch.org/whl/torch_stable.html
|
6 |
-
torch==1.9.0+cpu
|
7 |
-
-f https://download.pytorch.org/whl/torch_stable.html
|
8 |
-
torchvision==0.10.0+cpu
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
run_medclip.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
#!/usr/bin/env python
|
2 |
# coding=utf-8
|
3 |
-
# Copyright 2021 The HuggingFace Team All rights reserved.
|
4 |
#
|
5 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
# you may not use this file except in compliance with the License.
|
@@ -23,7 +23,6 @@ Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://hugg
|
|
23 |
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=masked-lm)
|
24 |
"""
|
25 |
|
26 |
-
import json
|
27 |
import logging
|
28 |
import os
|
29 |
import sys
|
@@ -34,24 +33,26 @@ from pathlib import Path
|
|
34 |
from typing import Callable, Optional
|
35 |
|
36 |
import torch
|
37 |
-
from
|
38 |
-
from torchvision.io import ImageReadMode, read_image
|
39 |
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize
|
40 |
from torchvision.transforms.functional import InterpolationMode
|
41 |
from tqdm import tqdm
|
42 |
|
43 |
import jax
|
44 |
import jax.numpy as jnp
|
|
|
45 |
import optax
|
46 |
import transformers
|
47 |
from flax import jax_utils
|
48 |
from flax.jax_utils import unreplicate
|
49 |
from flax.training import train_state
|
50 |
from flax.training.common_utils import get_metrics, shard, shard_prng_key
|
51 |
-
from src.modeling_medclip import FlaxHybridCLIP
|
52 |
from transformers import AutoTokenizer, HfArgumentParser, TrainingArguments, is_tensorboard_available, set_seed
|
53 |
import wandb
|
54 |
|
|
|
|
|
|
|
55 |
logger = logging.getLogger(__name__)
|
56 |
|
57 |
# Cache the result
|
@@ -69,7 +70,6 @@ else:
|
|
69 |
"Please run pip install tensorboard to enable."
|
70 |
)
|
71 |
|
72 |
-
|
73 |
@dataclass
|
74 |
class ModelArguments:
|
75 |
"""
|
@@ -119,16 +119,18 @@ class DataTrainingArguments:
|
|
119 |
Arguments pertaining to what data we are going to input our model for training and eval.
|
120 |
"""
|
121 |
|
122 |
-
|
123 |
-
|
124 |
default=None, metadata={"help": "The input training data file (a jsonlines file)."}
|
125 |
)
|
126 |
-
|
127 |
default=None,
|
128 |
metadata={"help": "An optional input evaluation data file (a jsonlines file)."},
|
129 |
)
|
|
|
|
|
130 |
max_seq_length: Optional[int] = field(
|
131 |
-
default=
|
132 |
metadata={
|
133 |
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
134 |
"than this will be truncated, sequences shorter will be padded."
|
@@ -155,19 +157,19 @@ class DataTrainingArguments:
|
|
155 |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
156 |
)
|
157 |
preprocessing_num_workers: Optional[int] = field(
|
158 |
-
default=
|
159 |
metadata={"help": "The number of processes to use for the preprocessing."},
|
160 |
)
|
161 |
|
162 |
def __post_init__(self):
|
163 |
-
if self.
|
164 |
raise ValueError("Need either a dataset name or a training/validation file.")
|
165 |
else:
|
166 |
-
if self.
|
167 |
-
extension = self.
|
168 |
assert extension == "json", "`train_file` should be a json file."
|
169 |
-
if self.
|
170 |
-
extension = self.
|
171 |
assert extension == "json", "`validation_file` should be a json file."
|
172 |
|
173 |
|
@@ -188,71 +190,6 @@ class Transform(torch.nn.Module):
|
|
188 |
x = self.transforms(x)
|
189 |
return x
|
190 |
|
191 |
-
|
192 |
-
class ImageTextDataset(VisionDataset):
|
193 |
-
"""
|
194 |
-
Dtaset for loading image-text data for tasks like CLIP training, Image Captioning.
|
195 |
-
|
196 |
-
Args:
|
197 |
-
root: (string): The root path where the dataset is stored
|
198 |
-
file_path: (string): Path to the file containing the image_paths and associated captions.
|
199 |
-
The expected format is jsonlines where each line is a json object containing to keys.
|
200 |
-
`image_path`: The path to the image.
|
201 |
-
`captions`: An `array` of captions.
|
202 |
-
transform (callable, optional): A function/transform that takes in an PIL image
|
203 |
-
and returns a transformed version. E.g, ``transforms.ToTensor``
|
204 |
-
target_transform (callable, optional): A function/transform that takes in the
|
205 |
-
target and transforms it.
|
206 |
-
transforms (callable, optional): A function/transform that takes input sample and its target as entry
|
207 |
-
and returns a transformed version.
|
208 |
-
"""
|
209 |
-
|
210 |
-
def __init__(
|
211 |
-
self,
|
212 |
-
root: str,
|
213 |
-
file_path: str,
|
214 |
-
transform: Optional[Callable] = None,
|
215 |
-
target_transform: Optional[Callable] = None,
|
216 |
-
transforms: Optional[Callable] = None,
|
217 |
-
):
|
218 |
-
super().__init__(root, transforms, transform, target_transform)
|
219 |
-
|
220 |
-
with open(file_path, "r") as f:
|
221 |
-
examples = [json.loads(line) for line in f.readlines()]
|
222 |
-
|
223 |
-
self.captions = []
|
224 |
-
self.image_paths = []
|
225 |
-
|
226 |
-
for example in examples:
|
227 |
-
self.captions.append(example["caption"])
|
228 |
-
self.image_paths.append(f'{root}/{example["image_path"]}')
|
229 |
-
|
230 |
-
def _load_image(self, idx: int):
|
231 |
-
path = self.image_paths[idx]
|
232 |
-
return read_image(path, mode=ImageReadMode.RGB)
|
233 |
-
|
234 |
-
def _load_target(self, idx):
|
235 |
-
sections = self.captions[idx]
|
236 |
-
longest_section = max(
|
237 |
-
filter(lambda x: isinstance(x, str), sections.values()),
|
238 |
-
key=len
|
239 |
-
)
|
240 |
-
|
241 |
-
return longest_section
|
242 |
-
|
243 |
-
def __getitem__(self, index: int):
|
244 |
-
image = self._load_image(index)
|
245 |
-
target = self._load_target(index)
|
246 |
-
|
247 |
-
if self.transforms is not None:
|
248 |
-
image, target = self.transforms(image, target)
|
249 |
-
|
250 |
-
return image, target
|
251 |
-
|
252 |
-
def __len__(self) -> int:
|
253 |
-
return len(self.captions)
|
254 |
-
|
255 |
-
|
256 |
class TrainState(train_state.TrainState):
|
257 |
dropout_rng: jnp.ndarray
|
258 |
|
@@ -348,7 +285,7 @@ def main():
|
|
348 |
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
349 |
)
|
350 |
|
351 |
-
model =
|
352 |
model_args.text_model_name_or_path,
|
353 |
model_args.vision_model_name_or_path,
|
354 |
seed=training_args.seed,
|
@@ -364,18 +301,51 @@ def main():
|
|
364 |
preprocess = Transform(config.vision_config.image_size)
|
365 |
preprocess = torch.jit.script(preprocess)
|
366 |
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
373 |
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
|
380 |
# Store some constant
|
381 |
num_epochs = int(training_args.num_train_epochs)
|
@@ -387,8 +357,15 @@ def main():
|
|
387 |
# Use collate function to tokenizer the text and convert the processed images to numpy
|
388 |
def collate_fn(examples):
|
389 |
pixel_values = torch.stack([example[0] for example in examples]).permute(0, 2, 3, 1).numpy()
|
390 |
-
|
391 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
392 |
|
393 |
batch = {
|
394 |
"pixel_values": pixel_values,
|
@@ -406,6 +383,7 @@ def main():
|
|
406 |
num_workers=data_args.preprocessing_num_workers,
|
407 |
persistent_workers=True,
|
408 |
drop_last=True,
|
|
|
409 |
collate_fn=collate_fn,
|
410 |
)
|
411 |
|
@@ -416,17 +394,20 @@ def main():
|
|
416 |
num_workers=data_args.preprocessing_num_workers,
|
417 |
persistent_workers=True,
|
418 |
drop_last=True,
|
|
|
419 |
collate_fn=collate_fn,
|
420 |
)
|
421 |
|
422 |
# Enable tensorboard only on the master node
|
423 |
if has_tensorboard and jax.process_index() == 0:
|
424 |
-
|
|
|
425 |
|
426 |
# Initialize our training
|
427 |
rng = jax.random.PRNGKey(training_args.seed)
|
428 |
rng, dropout_rng = jax.random.split(rng)
|
429 |
|
|
|
430 |
# Create learning rate schedule
|
431 |
linear_decay_lr_schedule_fn = create_learning_rate_fn(
|
432 |
len(train_dataset),
|
@@ -435,10 +416,17 @@ def main():
|
|
435 |
training_args.warmup_steps,
|
436 |
training_args.learning_rate,
|
437 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
|
439 |
# create adam optimizer
|
440 |
-
adamw = optax.
|
441 |
-
learning_rate=linear_decay_lr_schedule_fn,
|
442 |
b1=training_args.adam_beta1,
|
443 |
b2=training_args.adam_beta2,
|
444 |
eps=training_args.adam_epsilon,
|
@@ -473,7 +461,7 @@ def main():
|
|
473 |
|
474 |
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
|
475 |
|
476 |
-
metrics = {"loss": loss, "learning_rate":
|
477 |
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
478 |
|
479 |
return new_state, metrics
|
@@ -506,6 +494,7 @@ def main():
|
|
506 |
# Create sampling rng
|
507 |
rng, input_rng = jax.random.split(rng)
|
508 |
|
|
|
509 |
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
510 |
for epoch in epochs:
|
511 |
# ======================== Training ================================
|
@@ -572,6 +561,11 @@ def main():
|
|
572 |
commit_message=f"Saving weights and logs of epoch {epoch+1}",
|
573 |
)
|
574 |
|
|
|
|
|
|
|
|
|
575 |
|
576 |
if __name__ == "__main__":
|
577 |
-
main()
|
|
|
|
1 |
#!/usr/bin/env python
|
2 |
# coding=utf-8
|
3 |
+
# Copyright 2021 Santiago Hincapie-Potes & The HuggingFace Team All rights reserved.
|
4 |
#
|
5 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
# you may not use this file except in compliance with the License.
|
|
|
23 |
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=masked-lm)
|
24 |
"""
|
25 |
|
|
|
26 |
import logging
|
27 |
import os
|
28 |
import sys
|
|
|
33 |
from typing import Callable, Optional
|
34 |
|
35 |
import torch
|
36 |
+
from torch.utils.data import ConcatDataset
|
|
|
37 |
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize
|
38 |
from torchvision.transforms.functional import InterpolationMode
|
39 |
from tqdm import tqdm
|
40 |
|
41 |
import jax
|
42 |
import jax.numpy as jnp
|
43 |
+
import numpy as onp
|
44 |
import optax
|
45 |
import transformers
|
46 |
from flax import jax_utils
|
47 |
from flax.jax_utils import unreplicate
|
48 |
from flax.training import train_state
|
49 |
from flax.training.common_utils import get_metrics, shard, shard_prng_key
|
|
|
50 |
from transformers import AutoTokenizer, HfArgumentParser, TrainingArguments, is_tensorboard_available, set_seed
|
51 |
import wandb
|
52 |
|
53 |
+
from src.modeling_medclip import FlaxMedCLIP
|
54 |
+
from src.datasets_medclip import MIMICDataset, ROCODataset
|
55 |
+
|
56 |
logger = logging.getLogger(__name__)
|
57 |
|
58 |
# Cache the result
|
|
|
70 |
"Please run pip install tensorboard to enable."
|
71 |
)
|
72 |
|
|
|
73 |
@dataclass
|
74 |
class ModelArguments:
|
75 |
"""
|
|
|
119 |
Arguments pertaining to what data we are going to input our model for training and eval.
|
120 |
"""
|
121 |
|
122 |
+
mimic_data_dir: Optional[str] = field(default=None, metadata={"help": "The data directory with that containing the MIMIC-CXD dataset."})
|
123 |
+
mimic_train_file: Optional[str] = field(
|
124 |
default=None, metadata={"help": "The input training data file (a jsonlines file)."}
|
125 |
)
|
126 |
+
mimic_validation_file: Optional[str] = field(
|
127 |
default=None,
|
128 |
metadata={"help": "An optional input evaluation data file (a jsonlines file)."},
|
129 |
)
|
130 |
+
mimic_mode: Optional[str] = field(default=None, metadata={"help": "longest or docs"})
|
131 |
+
roco_data_dir: Optional[str] = field(default=None, metadata={"help": "The data directory with that containing the ROCO dataset."})
|
132 |
max_seq_length: Optional[int] = field(
|
133 |
+
default=128,
|
134 |
metadata={
|
135 |
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
136 |
"than this will be truncated, sequences shorter will be padded."
|
|
|
157 |
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
158 |
)
|
159 |
preprocessing_num_workers: Optional[int] = field(
|
160 |
+
default=32,
|
161 |
metadata={"help": "The number of processes to use for the preprocessing."},
|
162 |
)
|
163 |
|
164 |
def __post_init__(self):
|
165 |
+
if self.mimic_train_file is None and self.mimic_validation_file is None:
|
166 |
raise ValueError("Need either a dataset name or a training/validation file.")
|
167 |
else:
|
168 |
+
if self.mimic_train_file is not None:
|
169 |
+
extension = self.mimic_train_file.split(".")[-1]
|
170 |
assert extension == "json", "`train_file` should be a json file."
|
171 |
+
if self.mimic_validation_file is not None:
|
172 |
+
extension = self.mimic_validation_file.split(".")[-1]
|
173 |
assert extension == "json", "`validation_file` should be a json file."
|
174 |
|
175 |
|
|
|
190 |
x = self.transforms(x)
|
191 |
return x
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
class TrainState(train_state.TrainState):
|
194 |
dropout_rng: jnp.ndarray
|
195 |
|
|
|
285 |
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
286 |
)
|
287 |
|
288 |
+
model = FlaxMedCLIP.from_text_vision_pretrained(
|
289 |
model_args.text_model_name_or_path,
|
290 |
model_args.vision_model_name_or_path,
|
291 |
seed=training_args.seed,
|
|
|
301 |
preprocess = Transform(config.vision_config.image_size)
|
302 |
preprocess = torch.jit.script(preprocess)
|
303 |
|
304 |
+
_train_datasets = []
|
305 |
+
_eval_datasets = []
|
306 |
+
|
307 |
+
if data_args.mimic_data_dir is not None:
|
308 |
+
# Initialize the image-text dataset
|
309 |
+
_train_datasets.append(
|
310 |
+
MIMICDataset(
|
311 |
+
data_args.mimic_data_dir,
|
312 |
+
data_args.mimic_train_file,
|
313 |
+
transform=preprocess,
|
314 |
+
mode=data_args.mimic_mode,
|
315 |
+
)
|
316 |
+
)
|
317 |
|
318 |
+
_eval_datasets.append(
|
319 |
+
MIMICDataset(
|
320 |
+
data_args.mimic_data_dir,
|
321 |
+
data_args.mimic_validation_file,
|
322 |
+
transform=preprocess,
|
323 |
+
mode=data_args.mimic_mode,
|
324 |
+
)
|
325 |
+
)
|
326 |
+
|
327 |
+
if data_args.roco_data_dir is not None:
|
328 |
+
_train_datasets.append(
|
329 |
+
ROCODataset(
|
330 |
+
data_args.roco_data_dir,
|
331 |
+
split="train",
|
332 |
+
transform=preprocess,
|
333 |
+
)
|
334 |
+
)
|
335 |
+
|
336 |
+
_eval_datasets.append(
|
337 |
+
ROCODataset(
|
338 |
+
data_args.roco_data_dir,
|
339 |
+
split="validate",
|
340 |
+
transform=preprocess,
|
341 |
+
)
|
342 |
+
)
|
343 |
+
|
344 |
+
if not _train_datasets or not _eval_datasets:
|
345 |
+
raise ValueError
|
346 |
+
else:
|
347 |
+
train_dataset = ConcatDataset(_train_datasets)
|
348 |
+
eval_dataset = ConcatDataset(_eval_datasets)
|
349 |
|
350 |
# Store some constant
|
351 |
num_epochs = int(training_args.num_train_epochs)
|
|
|
357 |
# Use collate function to tokenizer the text and convert the processed images to numpy
|
358 |
def collate_fn(examples):
|
359 |
pixel_values = torch.stack([example[0] for example in examples]).permute(0, 2, 3, 1).numpy()
|
360 |
+
texts = [example[1] for example in examples]
|
361 |
+
|
362 |
+
inputs = tokenizer(
|
363 |
+
texts,
|
364 |
+
max_length=data_args.max_seq_length,
|
365 |
+
padding="max_length",
|
366 |
+
return_tensors="np",
|
367 |
+
truncation=True,
|
368 |
+
)
|
369 |
|
370 |
batch = {
|
371 |
"pixel_values": pixel_values,
|
|
|
383 |
num_workers=data_args.preprocessing_num_workers,
|
384 |
persistent_workers=True,
|
385 |
drop_last=True,
|
386 |
+
pin_memory=True,
|
387 |
collate_fn=collate_fn,
|
388 |
)
|
389 |
|
|
|
394 |
num_workers=data_args.preprocessing_num_workers,
|
395 |
persistent_workers=True,
|
396 |
drop_last=True,
|
397 |
+
pin_memory=True,
|
398 |
collate_fn=collate_fn,
|
399 |
)
|
400 |
|
401 |
# Enable tensorboard only on the master node
|
402 |
if has_tensorboard and jax.process_index() == 0:
|
403 |
+
log_dir = Path(training_args.output_dir).joinpath("logs").as_posix()
|
404 |
+
summary_writer = SummaryWriter(log_dir=log_dir)
|
405 |
|
406 |
# Initialize our training
|
407 |
rng = jax.random.PRNGKey(training_args.seed)
|
408 |
rng, dropout_rng = jax.random.split(rng)
|
409 |
|
410 |
+
"""
|
411 |
# Create learning rate schedule
|
412 |
linear_decay_lr_schedule_fn = create_learning_rate_fn(
|
413 |
len(train_dataset),
|
|
|
416 |
training_args.warmup_steps,
|
417 |
training_args.learning_rate,
|
418 |
)
|
419 |
+
"""
|
420 |
+
|
421 |
+
cosine_decay_lr_schedule_fn = optax.cosine_decay_schedule(
|
422 |
+
training_args.learning_rate,
|
423 |
+
training_args.warmup_steps,
|
424 |
+
training_args.learning_rate / 1000,
|
425 |
+
)
|
426 |
|
427 |
# create adam optimizer
|
428 |
+
adamw = optax.lamb(
|
429 |
+
learning_rate=cosine_decay_lr_schedule_fn, #linear_decay_lr_schedule_fn,
|
430 |
b1=training_args.adam_beta1,
|
431 |
b2=training_args.adam_beta2,
|
432 |
eps=training_args.adam_epsilon,
|
|
|
461 |
|
462 |
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
|
463 |
|
464 |
+
metrics = {"loss": loss, "learning_rate": cosine_decay_lr_schedule_fn(state.step)}
|
465 |
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
466 |
|
467 |
return new_state, metrics
|
|
|
494 |
# Create sampling rng
|
495 |
rng, input_rng = jax.random.split(rng)
|
496 |
|
497 |
+
#jax.profiler.start_trace(log_dir)
|
498 |
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
499 |
for epoch in epochs:
|
500 |
# ======================== Training ================================
|
|
|
561 |
commit_message=f"Saving weights and logs of epoch {epoch+1}",
|
562 |
)
|
563 |
|
564 |
+
#jax.profiler.stop_trace()
|
565 |
+
|
566 |
+
return model, params
|
567 |
+
|
568 |
|
569 |
if __name__ == "__main__":
|
570 |
+
model, params = main()
|
571 |
+
model.save_pretrained("model", params=params)
|
src/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (132 Bytes). View file
|
|
src/__pycache__/configuration_medclip.cpython-38.pyc
ADDED
Binary file (4.14 kB). View file
|
|
src/__pycache__/datasets_medclip.cpython-38.pyc
ADDED
Binary file (6.04 kB). View file
|
|
src/__pycache__/modeling_medclip.cpython-38.pyc
ADDED
Binary file (12.9 kB). View file
|
|
src/configuration_medclip.py
CHANGED
@@ -7,10 +7,10 @@ from transformers.utils import logging
|
|
7 |
logger = logging.get_logger(__name__)
|
8 |
|
9 |
|
10 |
-
class
|
11 |
r"""
|
12 |
-
:class:`
|
13 |
-
:class:`~
|
14 |
defining the text model and vision model configs.
|
15 |
|
16 |
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
@@ -28,13 +28,13 @@ class HybridCLIPConfig(PretrainedConfig):
|
|
28 |
|
29 |
Examples::
|
30 |
|
31 |
-
>>> from transformers import BertConfig, CLIPConfig,
|
32 |
|
33 |
>>> # Initializing a BERT and CLIP configuration
|
34 |
>>> config_text = BertConfig()
|
35 |
>>> config_vision = CLIPConfig()
|
36 |
|
37 |
-
>>> config =
|
38 |
|
39 |
>>> # Initializing a BERT and CLIPVision model
|
40 |
>>> model = EncoderDecoderModel(config=config)
|
@@ -47,8 +47,8 @@ class HybridCLIPConfig(PretrainedConfig):
|
|
47 |
>>> model.save_pretrained('my-model')
|
48 |
|
49 |
>>> # loading model and config from pretrained folder
|
50 |
-
>>> encoder_decoder_config =
|
51 |
-
>>> model =
|
52 |
"""
|
53 |
|
54 |
model_type = "hybrid-clip"
|
@@ -84,11 +84,11 @@ class HybridCLIPConfig(PretrainedConfig):
|
|
84 |
@classmethod
|
85 |
def from_text_vision_configs(cls, text_config: PretrainedConfig, vision_config: PretrainedConfig, **kwargs):
|
86 |
r"""
|
87 |
-
Instantiate a :class:`
|
88 |
vision model configuration.
|
89 |
|
90 |
Returns:
|
91 |
-
:class:`
|
92 |
"""
|
93 |
|
94 |
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
|
|
7 |
logger = logging.get_logger(__name__)
|
8 |
|
9 |
|
10 |
+
class MedCLIPConfig(PretrainedConfig):
|
11 |
r"""
|
12 |
+
:class:`MedCLIPConfig` is the configuration class to store the configuration of a
|
13 |
+
:class:`~MedCLIPModel`. It is used to instantiate HybridCLIPModel model according to the specified arguments,
|
14 |
defining the text model and vision model configs.
|
15 |
|
16 |
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
|
|
28 |
|
29 |
Examples::
|
30 |
|
31 |
+
>>> from transformers import BertConfig, CLIPConfig, MedCLIPConfig, FlaxMedCLIP
|
32 |
|
33 |
>>> # Initializing a BERT and CLIP configuration
|
34 |
>>> config_text = BertConfig()
|
35 |
>>> config_vision = CLIPConfig()
|
36 |
|
37 |
+
>>> config = MedCLIPConfig.from_text_vision_configs(config_text, config_vision, projection_dim=512)
|
38 |
|
39 |
>>> # Initializing a BERT and CLIPVision model
|
40 |
>>> model = EncoderDecoderModel(config=config)
|
|
|
47 |
>>> model.save_pretrained('my-model')
|
48 |
|
49 |
>>> # loading model and config from pretrained folder
|
50 |
+
>>> encoder_decoder_config = MedCLIPConfig.from_pretrained('my-model')
|
51 |
+
>>> model = FlaxMedCLIP.from_pretrained('my-model', config=encoder_decoder_config)
|
52 |
"""
|
53 |
|
54 |
model_type = "hybrid-clip"
|
|
|
84 |
@classmethod
|
85 |
def from_text_vision_configs(cls, text_config: PretrainedConfig, vision_config: PretrainedConfig, **kwargs):
|
86 |
r"""
|
87 |
+
Instantiate a :class:`MedCLIPConfig` (or a derived class) from text model configuration and
|
88 |
vision model configuration.
|
89 |
|
90 |
Returns:
|
91 |
+
:class:`MedCLIPConfig`: An instance of a configuration object
|
92 |
"""
|
93 |
|
94 |
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
src/datasets_medclip.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 Santiago Hincapie-Potes & The HuggingFace Team All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import csv
|
17 |
+
import json
|
18 |
+
import random
|
19 |
+
from pathlib import Path
|
20 |
+
from typing import Callable, Dict, Optional, Union
|
21 |
+
|
22 |
+
from torchvision.datasets import VisionDataset
|
23 |
+
from torchvision.io import ImageReadMode, read_image
|
24 |
+
|
25 |
+
class MIMICDataset(VisionDataset):
|
26 |
+
"""
|
27 |
+
Dataset for loading image-text data for tasks like CLIP training, Image Captioning.
|
28 |
+
|
29 |
+
Args:
|
30 |
+
root: (string): The root path where the dataset is stored
|
31 |
+
file_path: (string): Path to the file containing the image_paths and associated captions.
|
32 |
+
The expected format is jsonlines where each line is a json object containing to keys.
|
33 |
+
`image_path`: The path to the image.
|
34 |
+
`captions`: An `array` of captions.
|
35 |
+
mode: (string): target format:
|
36 |
+
* 'longest': return the longest sections
|
37 |
+
* 'docs': return findings and impressions
|
38 |
+
transform (callable, optional): A function/transform that takes in an PIL image
|
39 |
+
and returns a transformed version. E.g, ``transforms.ToTensor``
|
40 |
+
target_transform (callable, optional): A function/transform that takes in the
|
41 |
+
target and transforms it.
|
42 |
+
transforms (callable, optional): A function/transform that takes input sample and its target as entry
|
43 |
+
and returns a transformed version.
|
44 |
+
"""
|
45 |
+
|
46 |
+
def __init__(
|
47 |
+
self,
|
48 |
+
root: str,
|
49 |
+
file_path: str,
|
50 |
+
mode: str = 'longest',
|
51 |
+
transform: Optional[Callable] = None,
|
52 |
+
target_transform: Optional[Callable] = None,
|
53 |
+
transforms: Optional[Callable] = None,
|
54 |
+
):
|
55 |
+
super().__init__(root, transforms, transform, target_transform)
|
56 |
+
|
57 |
+
root = Path(root)
|
58 |
+
|
59 |
+
if not mode in {'longest', 'docs'}:
|
60 |
+
raise ValueError('Invalid mode')
|
61 |
+
|
62 |
+
self.mode = mode
|
63 |
+
|
64 |
+
with open(root / file_path, "r") as f:
|
65 |
+
examples = [json.loads(line) for line in f.readlines()]
|
66 |
+
|
67 |
+
self.captions = []
|
68 |
+
self.image_paths = []
|
69 |
+
|
70 |
+
for example in examples:
|
71 |
+
img_path = root / example["image_path"]
|
72 |
+
if img_path.exists():
|
73 |
+
self.captions.append(example["caption"])
|
74 |
+
self.image_paths.append(str(img_path))
|
75 |
+
|
76 |
+
def _load_image(self, idx: int):
|
77 |
+
path = self.image_paths[idx]
|
78 |
+
return read_image(path, mode=ImageReadMode.RGB)
|
79 |
+
|
80 |
+
def _load_target(self, idx) -> str:
|
81 |
+
sections = self.captions[idx]
|
82 |
+
|
83 |
+
if self.mode == 'docs':
|
84 |
+
_collection = []
|
85 |
+
if 'impression' in sections:
|
86 |
+
_collection.append(sections['impression'])
|
87 |
+
|
88 |
+
if 'findings' in sections:
|
89 |
+
_collection.append(sections['findings'])
|
90 |
+
|
91 |
+
if len(_collection) == 1:
|
92 |
+
output = _collection[0]
|
93 |
+
if len(_collection) == 2:
|
94 |
+
output = random.choice(_collection)
|
95 |
+
|
96 |
+
if self.mode == 'longest' or len(_collection) == 0:
|
97 |
+
longest_section = max(
|
98 |
+
filter(lambda x: isinstance(x, str), sections.values()),
|
99 |
+
key=len
|
100 |
+
)
|
101 |
+
|
102 |
+
output = longest_section
|
103 |
+
|
104 |
+
return output
|
105 |
+
|
106 |
+
def __getitem__(self, index: int):
|
107 |
+
image = self._load_image(index)
|
108 |
+
target = self._load_target(index)
|
109 |
+
|
110 |
+
if self.transforms is not None:
|
111 |
+
image, target = self.transforms(image, target)
|
112 |
+
|
113 |
+
return image, target
|
114 |
+
|
115 |
+
def __len__(self) -> int:
|
116 |
+
return len(self.captions)
|
117 |
+
|
118 |
+
|
119 |
+
class ROCODataset(VisionDataset):
|
120 |
+
"""
|
121 |
+
Dataset for loading image-text data for tasks like CLIP training, Image Captioning.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
root: (string): The root path where the dataset is stored
|
125 |
+
file_path: (string): Path to the file containing the image_paths and associated captions.
|
126 |
+
The expected format is jsonlines where each line is a json object containing to keys.
|
127 |
+
`image_path`: The path to the image.
|
128 |
+
`captions`: An `array` of captions.
|
129 |
+
transform (callable, optional): A function/transform that takes in an PIL image
|
130 |
+
and returns a transformed version. E.g, ``transforms.ToTensor``
|
131 |
+
target_transform (callable, optional): A function/transform that takes in the
|
132 |
+
target and transforms it.
|
133 |
+
transforms (callable, optional): A function/transform that takes input sample and its target as entry
|
134 |
+
and returns a transformed version.
|
135 |
+
"""
|
136 |
+
|
137 |
+
def __init__(
|
138 |
+
self,
|
139 |
+
root: str,
|
140 |
+
split: str,
|
141 |
+
transform: Optional[Callable] = None,
|
142 |
+
target_transform: Optional[Callable] = None,
|
143 |
+
transforms: Optional[Callable] = None,
|
144 |
+
):
|
145 |
+
super().__init__(root, transforms, transform, target_transform)
|
146 |
+
|
147 |
+
root = Path(root) / f"{split}/radiology/"
|
148 |
+
file_path = f"{split}.csv"
|
149 |
+
|
150 |
+
self.captions = []
|
151 |
+
self.image_paths = []
|
152 |
+
|
153 |
+
with open((root / file_path).resolve(), 'r') as buf:
|
154 |
+
csv_reader = csv.reader(buf)
|
155 |
+
next(csv_reader) # skip header
|
156 |
+
|
157 |
+
for row in csv_reader:
|
158 |
+
if len(row) == 3:
|
159 |
+
_, fname, caption = row
|
160 |
+
else:
|
161 |
+
print(row)
|
162 |
+
self.captions.append(caption.strip())
|
163 |
+
self.image_paths.append(str(root / 'images' / fname.strip()))
|
164 |
+
|
165 |
+
def _load_image(self, idx: int):
|
166 |
+
path = self.image_paths[idx]
|
167 |
+
return read_image(path, mode=ImageReadMode.RGB)
|
168 |
+
|
169 |
+
def _load_target(self, idx: int) -> str:
|
170 |
+
return self.captions[idx]
|
171 |
+
|
172 |
+
def __getitem__(self, index: int):
|
173 |
+
image = self._load_image(index)
|
174 |
+
target = self._load_target(index)
|
175 |
+
|
176 |
+
if self.transforms is not None:
|
177 |
+
image, target = self.transforms(image, target)
|
178 |
+
|
179 |
+
return image, target
|
180 |
+
|
181 |
+
def __len__(self) -> int:
|
182 |
+
return len(self.captions)
|
src/modeling_medclip.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
@@ -18,7 +18,7 @@ from typing import Optional, Tuple
|
|
18 |
import flax.linen as nn
|
19 |
import jax
|
20 |
import jax.numpy as jnp
|
21 |
-
from src.configuration_medclip import
|
22 |
from flax.core.frozen_dict import FrozenDict
|
23 |
from transformers import FLAX_MODEL_MAPPING, FlaxCLIPVisionModel
|
24 |
from transformers.modeling_flax_utils import FlaxPreTrainedModel
|
@@ -29,8 +29,8 @@ from transformers.utils import logging
|
|
29 |
logger = logging.get_logger(__name__)
|
30 |
|
31 |
|
32 |
-
class
|
33 |
-
config:
|
34 |
dtype: jnp.dtype = jnp.float32
|
35 |
|
36 |
def setup(self):
|
@@ -122,13 +122,13 @@ class FlaxHybridCLIPModule(nn.Module):
|
|
122 |
)
|
123 |
|
124 |
|
125 |
-
class
|
126 |
-
config_class =
|
127 |
-
module_class =
|
128 |
|
129 |
def __init__(
|
130 |
self,
|
131 |
-
config:
|
132 |
input_shape: Optional[Tuple] = None,
|
133 |
seed: int = 0,
|
134 |
dtype: jnp.dtype = jnp.float32,
|
@@ -347,14 +347,14 @@ class FlaxHybridCLIP(FlaxPreTrainedModel):
|
|
347 |
|
348 |
Example::
|
349 |
|
350 |
-
>>> from transformers import
|
351 |
>>> # initialize a model from pretrained BERT and CLIP models. Note that the projection layers will be randomly initialized.
|
352 |
>>> # If using CLIP's vision model the vision projection layer will be initialized using pre-trained weights
|
353 |
-
>>> model =
|
354 |
>>> # saving model after fine-tuning
|
355 |
>>> model.save_pretrained("./bert-clip")
|
356 |
>>> # load fine-tuned model
|
357 |
-
>>> model =
|
358 |
"""
|
359 |
|
360 |
kwargs_text = {
|
@@ -404,7 +404,7 @@ class FlaxHybridCLIP(FlaxPreTrainedModel):
|
|
404 |
|
405 |
# instantiate config with corresponding kwargs
|
406 |
dtype = kwargs.pop("dtype", jnp.float32)
|
407 |
-
config =
|
408 |
|
409 |
# init model
|
410 |
model = cls(config, *model_args, dtype=dtype, **kwargs)
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2021 Santiago Hincapie-Potes & The HuggingFace Team. All rights reserved.
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
|
|
18 |
import flax.linen as nn
|
19 |
import jax
|
20 |
import jax.numpy as jnp
|
21 |
+
from src.configuration_medclip import MedCLIPConfig
|
22 |
from flax.core.frozen_dict import FrozenDict
|
23 |
from transformers import FLAX_MODEL_MAPPING, FlaxCLIPVisionModel
|
24 |
from transformers.modeling_flax_utils import FlaxPreTrainedModel
|
|
|
29 |
logger = logging.get_logger(__name__)
|
30 |
|
31 |
|
32 |
+
class FlaxMedCLIPModule(nn.Module):
|
33 |
+
config: MedCLIPConfig
|
34 |
dtype: jnp.dtype = jnp.float32
|
35 |
|
36 |
def setup(self):
|
|
|
122 |
)
|
123 |
|
124 |
|
125 |
+
class FlaxMedCLIP(FlaxPreTrainedModel):
|
126 |
+
config_class = MedCLIPConfig
|
127 |
+
module_class = FlaxMedCLIPModule
|
128 |
|
129 |
def __init__(
|
130 |
self,
|
131 |
+
config: MedCLIPConfig,
|
132 |
input_shape: Optional[Tuple] = None,
|
133 |
seed: int = 0,
|
134 |
dtype: jnp.dtype = jnp.float32,
|
|
|
347 |
|
348 |
Example::
|
349 |
|
350 |
+
>>> from transformers import FlaxMedCLIP
|
351 |
>>> # initialize a model from pretrained BERT and CLIP models. Note that the projection layers will be randomly initialized.
|
352 |
>>> # If using CLIP's vision model the vision projection layer will be initialized using pre-trained weights
|
353 |
+
>>> model = FlaxMedCLIP.from_text_vision_pretrained('bert-base-uncased', 'openai/clip-vit-base-patch32')
|
354 |
>>> # saving model after fine-tuning
|
355 |
>>> model.save_pretrained("./bert-clip")
|
356 |
>>> # load fine-tuned model
|
357 |
+
>>> model = FlaxMedCLIP.from_pretrained("./bert-clip")
|
358 |
"""
|
359 |
|
360 |
kwargs_text = {
|
|
|
404 |
|
405 |
# instantiate config with corresponding kwargs
|
406 |
dtype = kwargs.pop("dtype", jnp.float32)
|
407 |
+
config = MedCLIPConfig.from_text_vision_configs(text_model.config, vision_model.config, **kwargs)
|
408 |
|
409 |
# init model
|
410 |
model = cls(config, *model_args, dtype=dtype, **kwargs)
|
tasks/prepare_roco.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
from pathlib import Path
|
3 |
+
import torchvision
|
4 |
+
|
5 |
+
def main(roco_root: str):
|
6 |
+
root = Path(roco_root)
|
7 |
+
|
8 |
+
check_images(
|
9 |
+
root / 'train/radiology', 'traindata.csv', 'train.csv'
|
10 |
+
)
|
11 |
+
|
12 |
+
check_images(
|
13 |
+
root / 'validate/radiology', 'valdata.csv', 'validate.csv'
|
14 |
+
)
|
15 |
+
|
16 |
+
check_images(
|
17 |
+
root / 'test/radiology', 'testdata.csv', 'test.csv'
|
18 |
+
)
|
19 |
+
|
20 |
+
def check_images(split_dir: Path, input_csv: str, target_output: str):
|
21 |
+
with open(split_dir / input_csv, 'r') as buf:
|
22 |
+
csv_reader = csv.reader(buf)
|
23 |
+
next(csv_reader, None)
|
24 |
+
|
25 |
+
filtered_csv = []
|
26 |
+
|
27 |
+
for row in csv_reader:
|
28 |
+
image_path = split_dir / 'images' / row[1]
|
29 |
+
try:
|
30 |
+
torchvision.io.read_image(str(image_path))
|
31 |
+
except:
|
32 |
+
continue
|
33 |
+
filtered_csv.append(row)
|
34 |
+
|
35 |
+
with open(split_dir / target_output, 'w') as csvfile:
|
36 |
+
spamwriter = csv.writer(csvfile)
|
37 |
+
for row in filtered_csv:
|
38 |
+
spamwriter.writerow(row)
|
39 |
+
|
40 |
+
|
41 |
+
if __name__ == '__main__':
|
42 |
+
main('/home/shpotes/medclip/data/roco-dataset')
|
43 |
+
{mode:full,isActive:false}
|
train_model.sh
CHANGED
@@ -1,15 +1,18 @@
|
|
1 |
python run_medclip.py \
|
2 |
-
--output_dir
|
|
|
3 |
--text_model_name_or_path="allenai/scibert_scivocab_uncased" \
|
4 |
--vision_model_name_or_path="openai/clip-vit-base-patch32" \
|
5 |
--tokenizer_name="allenai/scibert_scivocab_uncased" \
|
6 |
-
--
|
7 |
-
--
|
8 |
-
--
|
|
|
|
|
9 |
--do_train --do_eval \
|
10 |
-
--num_train_epochs="
|
11 |
-
--
|
12 |
-
--
|
13 |
-
--
|
14 |
-
--
|
15 |
-
--
|
|
|
1 |
python run_medclip.py \
|
2 |
+
--output_dir "flax-community/medclip" \
|
3 |
+
--overwrite_output_dir \
|
4 |
--text_model_name_or_path="allenai/scibert_scivocab_uncased" \
|
5 |
--vision_model_name_or_path="openai/clip-vit-base-patch32" \
|
6 |
--tokenizer_name="allenai/scibert_scivocab_uncased" \
|
7 |
+
--mimic_data_dir="/home/shpotes/medclip/data/mimic-cxr/" \
|
8 |
+
--mimic_train_file="train_dataset.json" \
|
9 |
+
--mimic_validation_file="validate_dataset.json" \
|
10 |
+
--mimic_mode="docs" \
|
11 |
+
--roco_data_dir="/home/shpotes/medclip/data/roco-dataset/" \
|
12 |
--do_train --do_eval \
|
13 |
+
--num_train_epochs="20" \
|
14 |
+
--preprocessing_num_workers=32 \
|
15 |
+
--per_device_train_batch_size=64 \
|
16 |
+
--per_device_eval_batch_size=64 \
|
17 |
+
--warmup_steps=3000 \
|
18 |
+
--learning_rate="3e-4"
|