santiago
commited on
Commit
·
36fdb4d
1
Parent(s):
09ad451
feat: add baseline code
Browse files- requirements.txt +8 -0
- src/configuration_medclip.py +108 -0
- src/modeling_medclip.py +420 -0
- src/run_medclip.py +562 -0
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
jax>=0.2.8
|
2 |
+
jaxlib>=0.1.59
|
3 |
+
flax>=0.3.4
|
4 |
+
optax>=0.0.8
|
5 |
+
-f https://download.pytorch.org/whl/torch_stable.html
|
6 |
+
torch==1.9.0+cpu
|
7 |
+
-f https://download.pytorch.org/whl/torch_stable.html
|
8 |
+
torchvision==0.10.0+cpu
|
src/configuration_medclip.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
from transformers.utils import logging
|
5 |
+
|
6 |
+
|
7 |
+
logger = logging.get_logger(__name__)
|
8 |
+
|
9 |
+
|
10 |
+
class HybridCLIPConfig(PretrainedConfig):
|
11 |
+
r"""
|
12 |
+
:class:`HybridCLIPConfig` is the configuration class to store the configuration of a
|
13 |
+
:class:`~HybridCLIPModel`. It is used to instantiate HybridCLIPModel model according to the specified arguments,
|
14 |
+
defining the text model and vision model configs.
|
15 |
+
|
16 |
+
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
17 |
+
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
|
18 |
+
|
19 |
+
Args:
|
20 |
+
text_config_dict (:obj:`dict`):
|
21 |
+
Dictionary of configuration options that defines text model config.
|
22 |
+
vision_config_dict (:obj:`dict`):
|
23 |
+
Dictionary of configuration options that defines vison model config.
|
24 |
+
projection_dim (:obj:`int`, `optional`, defaults to 512):
|
25 |
+
Dimentionality of text and vision projection layers.
|
26 |
+
kwargs (`optional`):
|
27 |
+
Dictionary of keyword arguments.
|
28 |
+
|
29 |
+
Examples::
|
30 |
+
|
31 |
+
>>> from transformers import BertConfig, CLIPConfig, HybridCLIPConfig, FlaxHybridCLIP
|
32 |
+
|
33 |
+
>>> # Initializing a BERT and CLIP configuration
|
34 |
+
>>> config_text = BertConfig()
|
35 |
+
>>> config_vision = CLIPConfig()
|
36 |
+
|
37 |
+
>>> config = HybridCLIPConfig.from_text_vision_configs(config_text, config_vision, projection_dim=512)
|
38 |
+
|
39 |
+
>>> # Initializing a BERT and CLIPVision model
|
40 |
+
>>> model = EncoderDecoderModel(config=config)
|
41 |
+
|
42 |
+
>>> # Accessing the model configuration
|
43 |
+
>>> config_text = model.config.text_config
|
44 |
+
>>> config_vision = model.config.vision_config
|
45 |
+
|
46 |
+
>>> # Saving the model, including its configuration
|
47 |
+
>>> model.save_pretrained('my-model')
|
48 |
+
|
49 |
+
>>> # loading model and config from pretrained folder
|
50 |
+
>>> encoder_decoder_config = HybridCLIPConfig.from_pretrained('my-model')
|
51 |
+
>>> model = FlaxHybridCLIP.from_pretrained('my-model', config=encoder_decoder_config)
|
52 |
+
"""
|
53 |
+
|
54 |
+
model_type = "hybrid-clip"
|
55 |
+
is_composition = True
|
56 |
+
|
57 |
+
def __init__(self, projection_dim=512, **kwargs):
|
58 |
+
super().__init__(**kwargs)
|
59 |
+
|
60 |
+
if "text_config" not in kwargs:
|
61 |
+
raise ValueError("`text_config` can not be `None`.")
|
62 |
+
|
63 |
+
if "vision_config" not in kwargs:
|
64 |
+
raise ValueError("`vision_config` can not be `None`.")
|
65 |
+
|
66 |
+
text_config = kwargs.pop("text_config")
|
67 |
+
vision_config = kwargs.pop("vision_config")
|
68 |
+
|
69 |
+
text_model_type = text_config.pop("model_type")
|
70 |
+
vision_model_type = vision_config.pop("model_type")
|
71 |
+
|
72 |
+
from transformers import AutoConfig
|
73 |
+
|
74 |
+
self.text_config = AutoConfig.for_model(text_model_type, **text_config)
|
75 |
+
|
76 |
+
if vision_model_type == "clip":
|
77 |
+
self.vision_config = AutoConfig.for_model(vision_model_type, **vision_config).vision_config
|
78 |
+
else:
|
79 |
+
self.vision_config = AutoConfig.for_model(vision_model_type, **vision_config)
|
80 |
+
|
81 |
+
self.projection_dim = projection_dim
|
82 |
+
self.initializer_factor = 1.0
|
83 |
+
|
84 |
+
@classmethod
|
85 |
+
def from_text_vision_configs(cls, text_config: PretrainedConfig, vision_config: PretrainedConfig, **kwargs):
|
86 |
+
r"""
|
87 |
+
Instantiate a :class:`HybridCLIPConfig` (or a derived class) from text model configuration and
|
88 |
+
vision model configuration.
|
89 |
+
|
90 |
+
Returns:
|
91 |
+
:class:`HybridCLIPConfig`: An instance of a configuration object
|
92 |
+
"""
|
93 |
+
|
94 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
95 |
+
|
96 |
+
def to_dict(self):
|
97 |
+
"""
|
98 |
+
Serializes this instance to a Python dictionary. Override the default
|
99 |
+
:meth:`~transformers.PretrainedConfig.to_dict`.
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
:obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
103 |
+
"""
|
104 |
+
output = copy.deepcopy(self.__dict__)
|
105 |
+
output["text_config"] = self.text_config.to_dict()
|
106 |
+
output["vision_config"] = self.vision_config.to_dict()
|
107 |
+
output["model_type"] = self.__class__.model_type
|
108 |
+
return output
|
src/modeling_medclip.py
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Optional, Tuple
|
17 |
+
|
18 |
+
import flax.linen as nn
|
19 |
+
import jax
|
20 |
+
import jax.numpy as jnp
|
21 |
+
from configuration_hybrid_clip import HybridCLIPConfig
|
22 |
+
from flax.core.frozen_dict import FrozenDict
|
23 |
+
from transformers import FLAX_MODEL_MAPPING, FlaxCLIPVisionModel
|
24 |
+
from transformers.modeling_flax_utils import FlaxPreTrainedModel
|
25 |
+
from transformers.models.clip.modeling_flax_clip import FlaxCLIPOutput
|
26 |
+
from transformers.utils import logging
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__)
|
30 |
+
|
31 |
+
|
32 |
+
class FlaxHybridCLIPModule(nn.Module):
|
33 |
+
config: HybridCLIPConfig
|
34 |
+
dtype: jnp.dtype = jnp.float32
|
35 |
+
|
36 |
+
def setup(self):
|
37 |
+
text_config = self.config.text_config
|
38 |
+
vision_config = self.config.vision_config
|
39 |
+
|
40 |
+
self.projection_dim = self.config.projection_dim
|
41 |
+
self.text_embed_dim = text_config.hidden_size
|
42 |
+
self.vision_embed_dim = vision_config.hidden_size
|
43 |
+
|
44 |
+
text_module = FLAX_MODEL_MAPPING[self.config.text_config.__class__].module_class
|
45 |
+
vision_module = FLAX_MODEL_MAPPING.get(self.config.vision_config.__class__, FlaxCLIPVisionModel).module_class
|
46 |
+
|
47 |
+
self.text_model = text_module(text_config, dtype=self.dtype)
|
48 |
+
self.vision_model = vision_module(vision_config, dtype=self.dtype)
|
49 |
+
|
50 |
+
self.visual_projection = nn.Dense(
|
51 |
+
self.projection_dim,
|
52 |
+
dtype=self.dtype,
|
53 |
+
kernel_init=jax.nn.initializers.normal(0.02, dtype=self.dtype),
|
54 |
+
use_bias=False,
|
55 |
+
)
|
56 |
+
self.text_projection = nn.Dense(
|
57 |
+
self.projection_dim,
|
58 |
+
dtype=self.dtype,
|
59 |
+
kernel_init=jax.nn.initializers.normal(0.02, dtype=self.dtype),
|
60 |
+
use_bias=False,
|
61 |
+
)
|
62 |
+
self.logit_scale = self.param("logit_scale", jax.nn.initializers.ones, [])
|
63 |
+
|
64 |
+
def __call__(
|
65 |
+
self,
|
66 |
+
input_ids=None,
|
67 |
+
pixel_values=None,
|
68 |
+
attention_mask=None,
|
69 |
+
position_ids=None,
|
70 |
+
token_type_ids=None,
|
71 |
+
deterministic: bool = True,
|
72 |
+
output_attentions=None,
|
73 |
+
output_hidden_states=None,
|
74 |
+
return_dict=None,
|
75 |
+
):
|
76 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
77 |
+
|
78 |
+
vision_outputs = self.vision_model(
|
79 |
+
pixel_values=pixel_values,
|
80 |
+
deterministic=deterministic,
|
81 |
+
output_attentions=output_attentions,
|
82 |
+
output_hidden_states=output_hidden_states,
|
83 |
+
return_dict=return_dict,
|
84 |
+
)
|
85 |
+
|
86 |
+
text_outputs = self.text_model(
|
87 |
+
input_ids=input_ids,
|
88 |
+
attention_mask=attention_mask,
|
89 |
+
token_type_ids=token_type_ids,
|
90 |
+
position_ids=position_ids,
|
91 |
+
deterministic=deterministic,
|
92 |
+
output_attentions=output_attentions,
|
93 |
+
output_hidden_states=output_hidden_states,
|
94 |
+
return_dict=return_dict,
|
95 |
+
)
|
96 |
+
|
97 |
+
image_embeds = vision_outputs[1]
|
98 |
+
image_embeds = self.visual_projection(image_embeds)
|
99 |
+
|
100 |
+
text_embeds = text_outputs[1]
|
101 |
+
text_embeds = self.text_projection(text_embeds)
|
102 |
+
|
103 |
+
# normalized features
|
104 |
+
image_embeds = image_embeds / jnp.linalg.norm(image_embeds, axis=-1, keepdims=True)
|
105 |
+
text_embeds = text_embeds / jnp.linalg.norm(text_embeds, axis=-1, keepdims=True)
|
106 |
+
|
107 |
+
# cosine similarity as logits
|
108 |
+
logit_scale = jnp.exp(self.logit_scale)
|
109 |
+
logits_per_text = jnp.matmul(text_embeds, image_embeds.T) * logit_scale
|
110 |
+
logits_per_image = logits_per_text.T
|
111 |
+
|
112 |
+
if not return_dict:
|
113 |
+
return (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
114 |
+
|
115 |
+
return FlaxCLIPOutput(
|
116 |
+
logits_per_image=logits_per_image,
|
117 |
+
logits_per_text=logits_per_text,
|
118 |
+
text_embeds=text_embeds,
|
119 |
+
image_embeds=image_embeds,
|
120 |
+
text_model_output=text_outputs,
|
121 |
+
vision_model_output=vision_outputs,
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
class FlaxHybridCLIP(FlaxPreTrainedModel):
|
126 |
+
config_class = HybridCLIPConfig
|
127 |
+
module_class = FlaxHybridCLIPModule
|
128 |
+
|
129 |
+
def __init__(
|
130 |
+
self,
|
131 |
+
config: HybridCLIPConfig,
|
132 |
+
input_shape: Optional[Tuple] = None,
|
133 |
+
seed: int = 0,
|
134 |
+
dtype: jnp.dtype = jnp.float32,
|
135 |
+
**kwargs
|
136 |
+
):
|
137 |
+
if input_shape is None:
|
138 |
+
input_shape = ((1, 1), (1, config.vision_config.image_size, config.vision_config.image_size, 3))
|
139 |
+
|
140 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
141 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)
|
142 |
+
|
143 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
|
144 |
+
# init input tensor
|
145 |
+
input_ids = jnp.zeros(input_shape[0], dtype="i4")
|
146 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape[0])
|
147 |
+
token_type_ids = jnp.ones_like(input_ids)
|
148 |
+
attention_mask = jnp.ones_like(input_ids)
|
149 |
+
|
150 |
+
pixel_values = jax.random.normal(rng, input_shape[1])
|
151 |
+
|
152 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
153 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
154 |
+
|
155 |
+
return self.module.init(rngs, input_ids, pixel_values, attention_mask, position_ids, token_type_ids)["params"]
|
156 |
+
|
157 |
+
def __call__(
|
158 |
+
self,
|
159 |
+
input_ids,
|
160 |
+
pixel_values,
|
161 |
+
attention_mask=None,
|
162 |
+
position_ids=None,
|
163 |
+
token_type_ids=None,
|
164 |
+
params: dict = None,
|
165 |
+
dropout_rng: jax.random.PRNGKey = None,
|
166 |
+
train: bool = False,
|
167 |
+
output_attentions: Optional[bool] = None,
|
168 |
+
output_hidden_states: Optional[bool] = None,
|
169 |
+
return_dict: Optional[bool] = None,
|
170 |
+
):
|
171 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
172 |
+
output_hidden_states = (
|
173 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
174 |
+
)
|
175 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
176 |
+
|
177 |
+
if position_ids is None:
|
178 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
179 |
+
|
180 |
+
if token_type_ids is None:
|
181 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
182 |
+
|
183 |
+
if attention_mask is None:
|
184 |
+
attention_mask = jnp.ones_like(input_ids)
|
185 |
+
|
186 |
+
# Handle any PRNG if needed
|
187 |
+
rngs = {}
|
188 |
+
if dropout_rng is not None:
|
189 |
+
rngs["dropout"] = dropout_rng
|
190 |
+
|
191 |
+
return self.module.apply(
|
192 |
+
{"params": params or self.params},
|
193 |
+
jnp.array(input_ids, dtype="i4"),
|
194 |
+
jnp.array(pixel_values, dtype=jnp.float32),
|
195 |
+
jnp.array(attention_mask, dtype="i4"),
|
196 |
+
jnp.array(position_ids, dtype="i4"),
|
197 |
+
jnp.array(token_type_ids, dtype="i4"),
|
198 |
+
not train,
|
199 |
+
output_attentions,
|
200 |
+
output_hidden_states,
|
201 |
+
return_dict,
|
202 |
+
rngs=rngs,
|
203 |
+
)
|
204 |
+
|
205 |
+
def get_text_features(
|
206 |
+
self,
|
207 |
+
input_ids,
|
208 |
+
attention_mask=None,
|
209 |
+
position_ids=None,
|
210 |
+
token_type_ids=None,
|
211 |
+
dropout_rng: jax.random.PRNGKey = None,
|
212 |
+
train=False,
|
213 |
+
):
|
214 |
+
r"""
|
215 |
+
Args:
|
216 |
+
input_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`):
|
217 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
218 |
+
provide it.
|
219 |
+
|
220 |
+
Indices can be obtained using :class:`~transformers.PreTrainedTokenizer`. See
|
221 |
+
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
|
222 |
+
for details.
|
223 |
+
|
224 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
text_features (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, output_dim`): The text embeddings
|
228 |
+
obtained by applying the projection layer to the pooled output of text model.
|
229 |
+
"""
|
230 |
+
if position_ids is None:
|
231 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
232 |
+
|
233 |
+
if token_type_ids is None:
|
234 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
235 |
+
|
236 |
+
if attention_mask is None:
|
237 |
+
attention_mask = jnp.ones_like(input_ids)
|
238 |
+
|
239 |
+
# Handle any PRNG if needed
|
240 |
+
rngs = {}
|
241 |
+
if dropout_rng is not None:
|
242 |
+
rngs["dropout"] = dropout_rng
|
243 |
+
|
244 |
+
def _get_features(module, input_ids, attention_mask, position_ids, token_type_ids, deterministic):
|
245 |
+
text_outputs = module.text_model(
|
246 |
+
input_ids=input_ids,
|
247 |
+
attention_mask=attention_mask,
|
248 |
+
position_ids=position_ids,
|
249 |
+
token_type_ids=token_type_ids,
|
250 |
+
deterministic=deterministic,
|
251 |
+
)
|
252 |
+
pooled_output = text_outputs[1]
|
253 |
+
text_features = module.text_projection(pooled_output)
|
254 |
+
return text_features
|
255 |
+
|
256 |
+
return self.module.apply(
|
257 |
+
{"params": self.params},
|
258 |
+
jnp.array(input_ids, dtype="i4"),
|
259 |
+
jnp.array(attention_mask, dtype="i4"),
|
260 |
+
jnp.array(position_ids, dtype="i4"),
|
261 |
+
jnp.array(token_type_ids, dtype="i4"),
|
262 |
+
not train,
|
263 |
+
method=_get_features,
|
264 |
+
rngs=rngs,
|
265 |
+
)
|
266 |
+
|
267 |
+
def get_image_features(self, pixel_values, dropout_rng: jax.random.PRNGKey = None, train=False):
|
268 |
+
r"""
|
269 |
+
Args:
|
270 |
+
pixel_values (:obj:`numpy.ndarray` of shape :obj:`(batch_size, num_channels, height, width)`):
|
271 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained
|
272 |
+
using :class:`~transformers.ImageFeatureExtractionMixin`. See
|
273 |
+
:meth:`transformers.ImageFeatureExtractionMixin.__call__` for details.
|
274 |
+
|
275 |
+
Returns:
|
276 |
+
image_features (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, output_dim`): The image embeddings
|
277 |
+
obtained by applying the projection layer to the pooled output of vision model.
|
278 |
+
"""
|
279 |
+
|
280 |
+
# Handle any PRNG if needed
|
281 |
+
rngs = {}
|
282 |
+
if dropout_rng is not None:
|
283 |
+
rngs["dropout"] = dropout_rng
|
284 |
+
|
285 |
+
def _get_features(module, pixel_values, deterministic):
|
286 |
+
vision_outputs = module.vision_model(pixel_values=pixel_values, deterministic=deterministic)
|
287 |
+
pooled_output = vision_outputs[1] # pooled_output
|
288 |
+
image_features = module.visual_projection(pooled_output)
|
289 |
+
return image_features
|
290 |
+
|
291 |
+
return self.module.apply(
|
292 |
+
{"params": self.params},
|
293 |
+
jnp.array(pixel_values, dtype=jnp.float32),
|
294 |
+
not train,
|
295 |
+
method=_get_features,
|
296 |
+
rngs=rngs,
|
297 |
+
)
|
298 |
+
|
299 |
+
@classmethod
|
300 |
+
def from_text_vision_pretrained(
|
301 |
+
cls,
|
302 |
+
text_model_name_or_path: str = None,
|
303 |
+
vision_model_name_or_path: str = None,
|
304 |
+
*model_args,
|
305 |
+
**kwargs,
|
306 |
+
) -> FlaxPreTrainedModel:
|
307 |
+
"""
|
308 |
+
Params:
|
309 |
+
text_model_name_or_path (:obj: `str`, `optional`):
|
310 |
+
Information necessary to initiate the text model. Can be either:
|
311 |
+
|
312 |
+
- A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
|
313 |
+
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
|
314 |
+
a user or organization name, like ``dbmdz/bert-base-german-cased``.
|
315 |
+
- A path to a `directory` containing model weights saved using
|
316 |
+
:func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
|
317 |
+
- A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In
|
318 |
+
this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
|
319 |
+
as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in
|
320 |
+
a Flax model using the provided conversion scripts and loading the Flax model afterwards.
|
321 |
+
|
322 |
+
vision_model_name_or_path (:obj: `str`, `optional`, defaults to `None`):
|
323 |
+
Information necessary to initiate the vision model. Can be either:
|
324 |
+
|
325 |
+
- A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
|
326 |
+
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
|
327 |
+
a user or organization name, like ``dbmdz/bert-base-german-cased``.
|
328 |
+
- A path to a `directory` containing model weights saved using
|
329 |
+
:func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
|
330 |
+
- A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In
|
331 |
+
this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
|
332 |
+
as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in
|
333 |
+
a Flax model using the provided conversion scripts and loading the Flax model afterwards.
|
334 |
+
|
335 |
+
model_args (remaining positional arguments, `optional`):
|
336 |
+
All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
|
337 |
+
|
338 |
+
kwargs (remaining dictionary of keyword arguments, `optional`):
|
339 |
+
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
340 |
+
:obj:`output_attentions=True`).
|
341 |
+
|
342 |
+
- To update the text configuration, use the prefix `text_` for each configuration parameter.
|
343 |
+
- To update the vision configuration, use the prefix `vision_` for each configuration parameter.
|
344 |
+
- To update the parent model configuration, do not use a prefix for each configuration parameter.
|
345 |
+
|
346 |
+
Behaves differently depending on whether a :obj:`config` is provided or automatically loaded.
|
347 |
+
|
348 |
+
Example::
|
349 |
+
|
350 |
+
>>> from transformers import FlaxHybridCLIP
|
351 |
+
>>> # initialize a model from pretrained BERT and CLIP models. Note that the projection layers will be randomly initialized.
|
352 |
+
>>> # If using CLIP's vision model the vision projection layer will be initialized using pre-trained weights
|
353 |
+
>>> model = FlaxHybridCLIP.from_text_vision_pretrained('bert-base-uncased', 'openai/clip-vit-base-patch32')
|
354 |
+
>>> # saving model after fine-tuning
|
355 |
+
>>> model.save_pretrained("./bert-clip")
|
356 |
+
>>> # load fine-tuned model
|
357 |
+
>>> model = FlaxHybridCLIP.from_pretrained("./bert-clip")
|
358 |
+
"""
|
359 |
+
|
360 |
+
kwargs_text = {
|
361 |
+
argument[len("text_") :]: value for argument, value in kwargs.items() if argument.startswith("text_")
|
362 |
+
}
|
363 |
+
|
364 |
+
kwargs_vision = {
|
365 |
+
argument[len("vision_") :]: value for argument, value in kwargs.items() if argument.startswith("vision_")
|
366 |
+
}
|
367 |
+
|
368 |
+
# remove text, vision kwargs from kwargs
|
369 |
+
for key in kwargs_text.keys():
|
370 |
+
del kwargs["text_" + key]
|
371 |
+
for key in kwargs_vision.keys():
|
372 |
+
del kwargs["vision_" + key]
|
373 |
+
|
374 |
+
# Load and initialize the text and vision model
|
375 |
+
text_model = kwargs_text.pop("model", None)
|
376 |
+
if text_model is None:
|
377 |
+
assert (
|
378 |
+
text_model_name_or_path is not None
|
379 |
+
), "If `model` is not defined as an argument, a `text_model_name_or_path` has to be defined"
|
380 |
+
from transformers import FlaxAutoModel
|
381 |
+
|
382 |
+
if "config" not in kwargs_text:
|
383 |
+
from transformers import AutoConfig
|
384 |
+
|
385 |
+
text_config = AutoConfig.from_pretrained(text_model_name_or_path)
|
386 |
+
kwargs_text["config"] = text_config
|
387 |
+
|
388 |
+
text_model = FlaxAutoModel.from_pretrained(text_model_name_or_path, *model_args, **kwargs_text)
|
389 |
+
|
390 |
+
vision_model = kwargs_vision.pop("model", None)
|
391 |
+
if vision_model is None:
|
392 |
+
assert (
|
393 |
+
vision_model_name_or_path is not None
|
394 |
+
), "If `model` is not defined as an argument, a `vision_model_name_or_path` has to be defined"
|
395 |
+
from transformers import FlaxAutoModel
|
396 |
+
|
397 |
+
if "config" not in kwargs_vision:
|
398 |
+
from transformers import AutoConfig
|
399 |
+
|
400 |
+
vision_config = AutoConfig.from_pretrained(vision_model_name_or_path)
|
401 |
+
kwargs_vision["config"] = vision_config
|
402 |
+
|
403 |
+
vision_model = FlaxAutoModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision)
|
404 |
+
|
405 |
+
# instantiate config with corresponding kwargs
|
406 |
+
dtype = kwargs.pop("dtype", jnp.float32)
|
407 |
+
config = HybridCLIPConfig.from_text_vision_configs(text_model.config, vision_model.config, **kwargs)
|
408 |
+
|
409 |
+
# init model
|
410 |
+
model = cls(config, *model_args, dtype=dtype, **kwargs)
|
411 |
+
|
412 |
+
if vision_config.model_type == "clip":
|
413 |
+
model.params["vision_model"]["vision_model"] = vision_model.params["vision_model"]
|
414 |
+
model.params["visual_projection"]["kernel"] = vision_model.params["visual_projection"]["kernel"]
|
415 |
+
else:
|
416 |
+
model.params["vision_model"] = vision_model.params
|
417 |
+
|
418 |
+
model.params["text_model"] = text_model.params
|
419 |
+
|
420 |
+
return model
|
src/run_medclip.py
ADDED
@@ -0,0 +1,562 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2021 The HuggingFace Team All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""
|
17 |
+
Training a CLIP like dual encoder models using text and vision encoders in the library.
|
18 |
+
|
19 |
+
The script can be used to train CLIP like models for languages other than english by using
|
20 |
+
a text encoder pre-trained in the desired language. Currently this script support the following vision
|
21 |
+
and text models:
|
22 |
+
Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip)
|
23 |
+
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=masked-lm)
|
24 |
+
"""
|
25 |
+
|
26 |
+
import json
|
27 |
+
import logging
|
28 |
+
import os
|
29 |
+
import sys
|
30 |
+
import time
|
31 |
+
from dataclasses import dataclass, field
|
32 |
+
from pathlib import Path
|
33 |
+
from typing import Callable, Optional
|
34 |
+
|
35 |
+
import torch
|
36 |
+
from torchvision.datasets import VisionDataset
|
37 |
+
from torchvision.io import ImageReadMode, read_image
|
38 |
+
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize
|
39 |
+
from torchvision.transforms.functional import InterpolationMode
|
40 |
+
from tqdm import tqdm
|
41 |
+
|
42 |
+
import jax
|
43 |
+
import jax.numpy as jnp
|
44 |
+
import optax
|
45 |
+
import transformers
|
46 |
+
from flax import jax_utils
|
47 |
+
from flax.jax_utils import unreplicate
|
48 |
+
from flax.training import train_state
|
49 |
+
from flax.training.common_utils import get_metrics, shard, shard_prng_key
|
50 |
+
from modeling_hybrid_clip import FlaxHybridCLIP
|
51 |
+
from transformers import AutoTokenizer, HfArgumentParser, TrainingArguments, is_tensorboard_available, set_seed
|
52 |
+
|
53 |
+
|
54 |
+
logger = logging.getLogger(__name__)
|
55 |
+
|
56 |
+
# Cache the result
|
57 |
+
has_tensorboard = is_tensorboard_available()
|
58 |
+
if has_tensorboard:
|
59 |
+
try:
|
60 |
+
from flax.metrics.tensorboard import SummaryWriter
|
61 |
+
except ImportError as ie:
|
62 |
+
has_tensorboard = False
|
63 |
+
print(f"Unable to display metrics through TensorBoard because some package are not installed: {ie}")
|
64 |
+
|
65 |
+
else:
|
66 |
+
print(
|
67 |
+
"Unable to display metrics through TensorBoard because the package is not installed: "
|
68 |
+
"Please run pip install tensorboard to enable."
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
@dataclass
|
73 |
+
class ModelArguments:
|
74 |
+
"""
|
75 |
+
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
|
76 |
+
"""
|
77 |
+
|
78 |
+
text_model_name_or_path: str = field(
|
79 |
+
metadata={
|
80 |
+
"help": "The text model checkpoint for weights initialization."
|
81 |
+
"Don't set if you want to train a model from scratch."
|
82 |
+
},
|
83 |
+
)
|
84 |
+
vision_model_name_or_path: str = field(
|
85 |
+
metadata={
|
86 |
+
"help": "The vision model checkpoint for weights initialization."
|
87 |
+
"Don't set if you want to train a model from scratch."
|
88 |
+
},
|
89 |
+
)
|
90 |
+
from_pt: bool = field(
|
91 |
+
default=True,
|
92 |
+
metadata={"help": "whether to load the text and vision model using PyTorch checkpoints."},
|
93 |
+
)
|
94 |
+
config_name: Optional[str] = field(
|
95 |
+
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
96 |
+
)
|
97 |
+
tokenizer_name: Optional[str] = field(
|
98 |
+
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
99 |
+
)
|
100 |
+
cache_dir: Optional[str] = field(
|
101 |
+
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
|
102 |
+
)
|
103 |
+
use_fast_tokenizer: bool = field(
|
104 |
+
default=True,
|
105 |
+
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
106 |
+
)
|
107 |
+
dtype: Optional[str] = field(
|
108 |
+
default="float32",
|
109 |
+
metadata={
|
110 |
+
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
|
111 |
+
},
|
112 |
+
)
|
113 |
+
|
114 |
+
|
115 |
+
@dataclass
|
116 |
+
class DataTrainingArguments:
|
117 |
+
"""
|
118 |
+
Arguments pertaining to what data we are going to input our model for training and eval.
|
119 |
+
"""
|
120 |
+
|
121 |
+
data_dir: Optional[str] = field(default=None, metadata={"help": "The data directory containing input files."})
|
122 |
+
train_file: Optional[str] = field(
|
123 |
+
default=None, metadata={"help": "The input training data file (a jsonlines file)."}
|
124 |
+
)
|
125 |
+
validation_file: Optional[str] = field(
|
126 |
+
default=None,
|
127 |
+
metadata={"help": "An optional input evaluation data file (a jsonlines file)."},
|
128 |
+
)
|
129 |
+
max_seq_length: Optional[int] = field(
|
130 |
+
default=72,
|
131 |
+
metadata={
|
132 |
+
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
133 |
+
"than this will be truncated, sequences shorter will be padded."
|
134 |
+
},
|
135 |
+
)
|
136 |
+
max_train_samples: Optional[int] = field(
|
137 |
+
default=None,
|
138 |
+
metadata={
|
139 |
+
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
140 |
+
"value if set."
|
141 |
+
},
|
142 |
+
)
|
143 |
+
max_eval_samples: Optional[int] = field(
|
144 |
+
default=None,
|
145 |
+
metadata={
|
146 |
+
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
147 |
+
"value if set."
|
148 |
+
},
|
149 |
+
)
|
150 |
+
overwrite_cache: bool = field(
|
151 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
152 |
+
)
|
153 |
+
overwrite_cache: bool = field(
|
154 |
+
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
155 |
+
)
|
156 |
+
preprocessing_num_workers: Optional[int] = field(
|
157 |
+
default=None,
|
158 |
+
metadata={"help": "The number of processes to use for the preprocessing."},
|
159 |
+
)
|
160 |
+
|
161 |
+
def __post_init__(self):
|
162 |
+
if self.train_file is None and self.validation_file is None:
|
163 |
+
raise ValueError("Need either a dataset name or a training/validation file.")
|
164 |
+
else:
|
165 |
+
if self.train_file is not None:
|
166 |
+
extension = self.train_file.split(".")[-1]
|
167 |
+
assert extension == "json", "`train_file` should be a json file."
|
168 |
+
if self.validation_file is not None:
|
169 |
+
extension = self.validation_file.split(".")[-1]
|
170 |
+
assert extension == "json", "`validation_file` should be a json file."
|
171 |
+
|
172 |
+
|
173 |
+
# We use torchvision for faster image pre-processing.
|
174 |
+
# We need to ensure faster processing speed as it can become a bottleneck on TPU
|
175 |
+
class Transform(torch.nn.Module):
|
176 |
+
def __init__(self, image_size):
|
177 |
+
super().__init__()
|
178 |
+
self.transforms = torch.nn.Sequential(
|
179 |
+
Resize([image_size], interpolation=InterpolationMode.BICUBIC),
|
180 |
+
CenterCrop(image_size),
|
181 |
+
ConvertImageDtype(torch.float),
|
182 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
183 |
+
)
|
184 |
+
|
185 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
186 |
+
with torch.no_grad():
|
187 |
+
x = self.transforms(x)
|
188 |
+
return x
|
189 |
+
|
190 |
+
|
191 |
+
class ImageTextDataset(VisionDataset):
|
192 |
+
"""
|
193 |
+
Dtaset for loading image-text data for tasks like CLIP training, Image Captioning.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
root: (string): The root path where the dataset is stored
|
197 |
+
file_path: (string): Path to the file containing the image_paths and associated captions.
|
198 |
+
The expected format is jsonlines where each line is a json object containing to keys.
|
199 |
+
`image_path`: The path to the image.
|
200 |
+
`captions`: An `array` of captions.
|
201 |
+
transform (callable, optional): A function/transform that takes in an PIL image
|
202 |
+
and returns a transformed version. E.g, ``transforms.ToTensor``
|
203 |
+
target_transform (callable, optional): A function/transform that takes in the
|
204 |
+
target and transforms it.
|
205 |
+
transforms (callable, optional): A function/transform that takes input sample and its target as entry
|
206 |
+
and returns a transformed version.
|
207 |
+
"""
|
208 |
+
|
209 |
+
def __init__(
|
210 |
+
self,
|
211 |
+
root: str,
|
212 |
+
file_path: str,
|
213 |
+
captions_per_image=2,
|
214 |
+
transform: Optional[Callable] = None,
|
215 |
+
target_transform: Optional[Callable] = None,
|
216 |
+
transforms: Optional[Callable] = None,
|
217 |
+
):
|
218 |
+
super().__init__(root, transforms, transform, target_transform)
|
219 |
+
|
220 |
+
with open(file_path, "r") as f:
|
221 |
+
examples = [json.loads(line) for line in f.readlines()]
|
222 |
+
|
223 |
+
self.captions = []
|
224 |
+
self.image_paths = []
|
225 |
+
|
226 |
+
for example in examples:
|
227 |
+
self.captions.extend(example["captions"][:captions_per_image])
|
228 |
+
self.image_paths.extend([example["image_path"]] * captions_per_image)
|
229 |
+
|
230 |
+
def _load_image(self, idx: int):
|
231 |
+
path = self.image_paths[idx]
|
232 |
+
return read_image(path, mode=ImageReadMode.RGB)
|
233 |
+
|
234 |
+
def _load_target(self, idx):
|
235 |
+
return self.captions[idx]
|
236 |
+
|
237 |
+
def __getitem__(self, index: int):
|
238 |
+
image = self._load_image(index)
|
239 |
+
target = self._load_target(index)
|
240 |
+
|
241 |
+
if self.transforms is not None:
|
242 |
+
image, target = self.transforms(image, target)
|
243 |
+
|
244 |
+
return image, target
|
245 |
+
|
246 |
+
def __len__(self) -> int:
|
247 |
+
return len(self.captions)
|
248 |
+
|
249 |
+
|
250 |
+
class TrainState(train_state.TrainState):
|
251 |
+
dropout_rng: jnp.ndarray
|
252 |
+
|
253 |
+
def replicate(self):
|
254 |
+
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))
|
255 |
+
|
256 |
+
|
257 |
+
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step):
|
258 |
+
summary_writer.scalar("train_time", train_time, step)
|
259 |
+
|
260 |
+
train_metrics = get_metrics(train_metrics)
|
261 |
+
for key, vals in train_metrics.items():
|
262 |
+
tag = f"train_{key}"
|
263 |
+
for i, val in enumerate(vals):
|
264 |
+
summary_writer.scalar(tag, val, step - len(vals) + i + 1)
|
265 |
+
|
266 |
+
for metric_name, value in eval_metrics.items():
|
267 |
+
summary_writer.scalar(f"eval_{metric_name}", value, step)
|
268 |
+
|
269 |
+
|
270 |
+
def create_learning_rate_fn(
|
271 |
+
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float
|
272 |
+
) -> Callable[[int], jnp.array]:
|
273 |
+
"""Returns a linear warmup, linear_decay learning rate function."""
|
274 |
+
steps_per_epoch = train_ds_size // train_batch_size
|
275 |
+
num_train_steps = steps_per_epoch * num_train_epochs
|
276 |
+
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
|
277 |
+
decay_fn = optax.linear_schedule(
|
278 |
+
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
|
279 |
+
)
|
280 |
+
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
|
281 |
+
return schedule_fn
|
282 |
+
|
283 |
+
|
284 |
+
def main():
|
285 |
+
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
286 |
+
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
287 |
+
# If we pass only one argument to the script and it's the path to a json file,
|
288 |
+
# let's parse it to get our arguments.
|
289 |
+
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
290 |
+
else:
|
291 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
292 |
+
|
293 |
+
if (
|
294 |
+
os.path.exists(training_args.output_dir)
|
295 |
+
and os.listdir(training_args.output_dir)
|
296 |
+
and training_args.do_train
|
297 |
+
and not training_args.overwrite_output_dir
|
298 |
+
):
|
299 |
+
raise ValueError(
|
300 |
+
f"Output directory ({training_args.output_dir}) already exists and is not empty."
|
301 |
+
"Use --overwrite_output_dir to overcome."
|
302 |
+
)
|
303 |
+
|
304 |
+
# Make one log on every process with the configuration for debugging.
|
305 |
+
logging.basicConfig(
|
306 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
307 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
308 |
+
level=logging.INFO,
|
309 |
+
)
|
310 |
+
# Setup logging, we only want one process per machine to log things on the screen.
|
311 |
+
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
312 |
+
if jax.process_index() == 0:
|
313 |
+
transformers.utils.logging.set_verbosity_info()
|
314 |
+
else:
|
315 |
+
transformers.utils.logging.set_verbosity_error()
|
316 |
+
|
317 |
+
# Set the verbosity to info of the Transformers logger (on main process only):
|
318 |
+
logger.info(f"Training/evaluation parameters {training_args}")
|
319 |
+
|
320 |
+
if model_args.tokenizer_name:
|
321 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
322 |
+
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
|
323 |
+
)
|
324 |
+
elif model_args.text_model_name_or_path:
|
325 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
326 |
+
model_args.text_model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
|
327 |
+
)
|
328 |
+
else:
|
329 |
+
raise ValueError(
|
330 |
+
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
|
331 |
+
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
|
332 |
+
)
|
333 |
+
|
334 |
+
model = FlaxHybridCLIP.from_text_vision_pretrained(
|
335 |
+
model_args.text_model_name_or_path,
|
336 |
+
model_args.vision_model_name_or_path,
|
337 |
+
seed=training_args.seed,
|
338 |
+
dtype=getattr(jnp, model_args.dtype),
|
339 |
+
text_from_pt=model_args.from_pt,
|
340 |
+
vision_from_pt=model_args.from_pt,
|
341 |
+
)
|
342 |
+
config = model.config
|
343 |
+
# set seed for torch dataloaders
|
344 |
+
set_seed(training_args.seed)
|
345 |
+
|
346 |
+
# Initialize torchvision transforms and jit them for faster processing
|
347 |
+
preprocess = Transform(config.vision_config.image_size)
|
348 |
+
preprocess = torch.jit.script(preprocess)
|
349 |
+
|
350 |
+
# Initialize the image-text dataset
|
351 |
+
train_dataset = ImageTextDataset(
|
352 |
+
data_args.data_dir,
|
353 |
+
data_args.train_file,
|
354 |
+
captions_per_image=2,
|
355 |
+
transform=preprocess,
|
356 |
+
)
|
357 |
+
|
358 |
+
eval_dataset = ImageTextDataset(
|
359 |
+
data_args.data_dir,
|
360 |
+
data_args.validation_file,
|
361 |
+
captions_per_image=1,
|
362 |
+
transform=preprocess,
|
363 |
+
)
|
364 |
+
|
365 |
+
# Store some constant
|
366 |
+
num_epochs = int(training_args.num_train_epochs)
|
367 |
+
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
|
368 |
+
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
369 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
370 |
+
total_train_steps = steps_per_epoch * num_epochs
|
371 |
+
|
372 |
+
# Use collate function to tokenizer the text and convert the processed images to numpy
|
373 |
+
def collate_fn(examples):
|
374 |
+
pixel_values = torch.stack([example[0] for example in examples]).permute(0, 2, 3, 1).numpy()
|
375 |
+
captions = [example[1] for example in examples]
|
376 |
+
inputs = tokenizer(captions, max_length=data_args.max_seq_length, padding="max_length", return_tensors="np")
|
377 |
+
|
378 |
+
batch = {
|
379 |
+
"pixel_values": pixel_values,
|
380 |
+
"input_ids": inputs["input_ids"],
|
381 |
+
"attention_mask": inputs["attention_mask"],
|
382 |
+
}
|
383 |
+
|
384 |
+
return batch
|
385 |
+
|
386 |
+
# Create data loaders
|
387 |
+
train_loader = torch.utils.data.DataLoader(
|
388 |
+
train_dataset,
|
389 |
+
batch_size=train_batch_size,
|
390 |
+
shuffle=True,
|
391 |
+
num_workers=data_args.preprocessing_num_workers,
|
392 |
+
persistent_workers=True,
|
393 |
+
drop_last=True,
|
394 |
+
collate_fn=collate_fn,
|
395 |
+
)
|
396 |
+
|
397 |
+
eval_loader = torch.utils.data.DataLoader(
|
398 |
+
eval_dataset,
|
399 |
+
batch_size=eval_batch_size,
|
400 |
+
shuffle=False,
|
401 |
+
num_workers=data_args.preprocessing_num_workers,
|
402 |
+
persistent_workers=True,
|
403 |
+
drop_last=True,
|
404 |
+
collate_fn=collate_fn,
|
405 |
+
)
|
406 |
+
|
407 |
+
# Enable tensorboard only on the master node
|
408 |
+
if has_tensorboard and jax.process_index() == 0:
|
409 |
+
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir).joinpath("logs").as_posix())
|
410 |
+
|
411 |
+
# Initialize our training
|
412 |
+
rng = jax.random.PRNGKey(training_args.seed)
|
413 |
+
rng, dropout_rng = jax.random.split(rng)
|
414 |
+
|
415 |
+
# Create learning rate schedule
|
416 |
+
linear_decay_lr_schedule_fn = create_learning_rate_fn(
|
417 |
+
len(train_dataset),
|
418 |
+
train_batch_size,
|
419 |
+
training_args.num_train_epochs,
|
420 |
+
training_args.warmup_steps,
|
421 |
+
training_args.learning_rate,
|
422 |
+
)
|
423 |
+
|
424 |
+
# create adam optimizer
|
425 |
+
adamw = optax.adamw(
|
426 |
+
learning_rate=linear_decay_lr_schedule_fn,
|
427 |
+
b1=training_args.adam_beta1,
|
428 |
+
b2=training_args.adam_beta2,
|
429 |
+
eps=training_args.adam_epsilon,
|
430 |
+
weight_decay=training_args.weight_decay,
|
431 |
+
)
|
432 |
+
|
433 |
+
# Setup train state
|
434 |
+
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng)
|
435 |
+
|
436 |
+
def cross_entropy(logits, axis):
|
437 |
+
logprobs = jax.nn.log_softmax(logits, axis=axis)
|
438 |
+
nll = jnp.diag(logprobs)
|
439 |
+
ce = -jnp.mean(nll)
|
440 |
+
return ce
|
441 |
+
|
442 |
+
def clip_loss(similarity):
|
443 |
+
loss = (cross_entropy(similarity, axis=0) + cross_entropy(similarity, axis=1)) / 2
|
444 |
+
return loss
|
445 |
+
|
446 |
+
# Define gradient update step fn
|
447 |
+
def train_step(state, batch):
|
448 |
+
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
|
449 |
+
|
450 |
+
def compute_loss(params):
|
451 |
+
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
|
452 |
+
loss = clip_loss(logits)
|
453 |
+
return loss
|
454 |
+
|
455 |
+
grad_fn = jax.value_and_grad(compute_loss)
|
456 |
+
loss, grad = grad_fn(state.params)
|
457 |
+
grad = jax.lax.pmean(grad, "batch")
|
458 |
+
|
459 |
+
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng)
|
460 |
+
|
461 |
+
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)}
|
462 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
463 |
+
|
464 |
+
return new_state, metrics
|
465 |
+
|
466 |
+
# Define eval fn
|
467 |
+
def eval_step(params, batch):
|
468 |
+
logits = model(**batch, params=params, train=False)[0]
|
469 |
+
loss = clip_loss(logits)
|
470 |
+
|
471 |
+
# summarize metrics
|
472 |
+
metrics = {"loss": loss}
|
473 |
+
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
474 |
+
return metrics
|
475 |
+
|
476 |
+
# Create parallel version of the train and eval step
|
477 |
+
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
|
478 |
+
p_eval_step = jax.pmap(eval_step, "batch")
|
479 |
+
|
480 |
+
# Replicate the train state on each device
|
481 |
+
state = state.replicate()
|
482 |
+
|
483 |
+
logger.info("***** Running training *****")
|
484 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
485 |
+
logger.info(f" Num Epochs = {num_epochs}")
|
486 |
+
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
|
487 |
+
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}")
|
488 |
+
logger.info(f" Total optimization steps = {total_train_steps}")
|
489 |
+
|
490 |
+
train_time = 0
|
491 |
+
# Create sampling rng
|
492 |
+
rng, input_rng = jax.random.split(rng)
|
493 |
+
|
494 |
+
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
495 |
+
for epoch in epochs:
|
496 |
+
# ======================== Training ================================
|
497 |
+
train_start = time.time()
|
498 |
+
|
499 |
+
# Create sampling rng
|
500 |
+
rng, input_rng = jax.random.split(rng)
|
501 |
+
train_metrics = []
|
502 |
+
|
503 |
+
steps_per_epoch = len(train_dataset) // train_batch_size
|
504 |
+
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False)
|
505 |
+
# train
|
506 |
+
for batch in train_loader:
|
507 |
+
batch = shard(batch)
|
508 |
+
state, train_metric = p_train_step(state, batch)
|
509 |
+
train_metrics.append(train_metric)
|
510 |
+
|
511 |
+
train_step_progress_bar.update(1)
|
512 |
+
|
513 |
+
train_time += time.time() - train_start
|
514 |
+
|
515 |
+
train_metric = unreplicate(train_metric)
|
516 |
+
|
517 |
+
train_step_progress_bar.close()
|
518 |
+
epochs.write(
|
519 |
+
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
|
520 |
+
)
|
521 |
+
|
522 |
+
# ======================== Evaluating ==============================
|
523 |
+
eval_metrics = []
|
524 |
+
eval_steps = len(eval_dataset) // eval_batch_size
|
525 |
+
eval_step_progress_bar = tqdm(total=eval_steps, desc="Evaluating...", position=2, leave=False)
|
526 |
+
for batch in eval_loader:
|
527 |
+
# Model forward
|
528 |
+
batch = shard(batch)
|
529 |
+
metrics = p_eval_step(state.params, batch)
|
530 |
+
eval_metrics.append(metrics)
|
531 |
+
|
532 |
+
eval_step_progress_bar.update(1)
|
533 |
+
|
534 |
+
# normalize eval metrics
|
535 |
+
eval_metrics = get_metrics(eval_metrics)
|
536 |
+
|
537 |
+
eval_metrics = jax.tree_map(jnp.mean, eval_metrics)
|
538 |
+
|
539 |
+
# Print metrics and update progress bar
|
540 |
+
eval_step_progress_bar.close()
|
541 |
+
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})"
|
542 |
+
epochs.write(desc)
|
543 |
+
epochs.desc = desc
|
544 |
+
|
545 |
+
# Save metrics
|
546 |
+
if has_tensorboard and jax.process_index() == 0:
|
547 |
+
cur_step = epoch * (len(train_dataset) // train_batch_size)
|
548 |
+
write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step)
|
549 |
+
|
550 |
+
# save checkpoint after each epoch and push checkpoint to the hub
|
551 |
+
if jax.process_index() == 0:
|
552 |
+
params = jax.device_get(unreplicate(state.params))
|
553 |
+
model.save_pretrained(
|
554 |
+
training_args.output_dir,
|
555 |
+
params=params,
|
556 |
+
push_to_hub=training_args.push_to_hub,
|
557 |
+
commit_message=f"Saving weights and logs of epoch {epoch+1}",
|
558 |
+
)
|
559 |
+
|
560 |
+
|
561 |
+
if __name__ == "__main__":
|
562 |
+
main()
|