--- license: llama3 library_name: transformers base_model: - nbeerbower/llama-3-Stheno-Mahou-8B datasets: - flammenai/FlameMix-DPO-v1 - flammenai/Grill-preprod-v1_chatML - flammenai/Grill-preprod-v2_chatML model-index: - name: Mahou-1.2a-llama3-8B results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 50.93 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/Mahou-1.2a-llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 28.97 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/Mahou-1.2a-llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 7.55 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/Mahou-1.2a-llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 5.15 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/Mahou-1.2a-llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 6.02 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/Mahou-1.2a-llama3-8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 31.3 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/Mahou-1.2a-llama3-8B name: Open LLM Leaderboard --- ![image/png](https://huggingface.co/flammenai/Mahou-1.0-mistral-7B/resolve/main/mahou1.png) # Mahou-1.2a-llama3-8B Mahou is our attempt to build a production-ready conversational/roleplay LLM. Future versions will be released iteratively and finetuned from flammen.ai conversational data. ### Chat Format This model has been trained to use ChatML format. ``` <|im_start|>system {{system}}<|im_end|> <|im_start|>{{char}} {{message}}<|im_end|> <|im_start|>{{user}} {{message}}<|im_end|> ``` # Roleplay Format - Speech without quotes. - Actions in `*asterisks*` ``` *leans against wall cooly* so like, i just casted a super strong spell at magician academy today, not gonna lie, felt badass. ``` ### ST Settings 1. Use ChatML for the Context Template. 2. Turn on Instruct Mode for ChatML. 3. Use the following stopping strings: `["<", "|", "<|", "\n"]` ### Method Finetuned using an A100 on Google Colab. [Fine-tune a Mistral-7b model with Direct Preference Optimization](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac) - [Maxime Labonne](https://huggingface.co/mlabonne) ### Configuration LoRA, model, and training settings: ```python # LoRA configuration peft_config = LoraConfig( r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] ) # Model to fine-tune model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, load_in_4bit=True ) model.config.use_cache = False # Reference model ref_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, load_in_4bit=True ) # Training arguments training_args = TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, gradient_checkpointing=True, learning_rate=5e-5, lr_scheduler_type="cosine", max_steps=2000, save_strategy="no", logging_steps=1, output_dir=new_model, optim="paged_adamw_32bit", warmup_steps=100, bf16=True, report_to="wandb", ) # Create DPO trainer dpo_trainer = DPOTrainer( model, ref_model, args=training_args, train_dataset=dataset, tokenizer=tokenizer, peft_config=peft_config, beta=0.1, force_use_ref_model=True ) # Fine-tune model with DPO dpo_trainer.train() ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_flammenai__Mahou-1.2a-llama3-8B) | Metric |Value| |-------------------|----:| |Avg. |21.65| |IFEval (0-Shot) |50.93| |BBH (3-Shot) |28.97| |MATH Lvl 5 (4-Shot)| 7.55| |GPQA (0-shot) | 5.15| |MuSR (0-shot) | 6.02| |MMLU-PRO (5-shot) |31.30|