ultravox-v0_4_1-mistral-nemo / ultravox_model.py
zqhuang's picture
Upload UltravoxPipeline
33edaae verified
raw
history blame
27.1 kB
import logging
import re
from typing import Any, Dict, Optional, Set, Tuple, Union
import peft
import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
import transformers.activations
import transformers.modeling_outputs
import transformers.models
from transformers.models.whisper import modeling_whisper as whisper
# We must use relative import in this directory to allow uploading to HF Hub
# Even "from . import X" pattern doesn't work (undocumented and unclear why)
from .ultravox_config import LossConfig
from .ultravox_config import LossFunction
from .ultravox_config import UltravoxConfig
class UltravoxModel(transformers.LlamaPreTrainedModel):
"""
The Ultravox model which consists of an audio encoder and a language model.
Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
projected to the language model's embedding space using a few linear layers.
The text is embedded by the language model as usual and then the audio and text embeddings are merged together.
A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.
Parameters:
config: Model configuration class with all the parameters of the model.
"""
config_class = UltravoxConfig
config: UltravoxConfig # for type hinting
# We minimize the weights in state_dict in order to reduce the size of the checkpoint
# The issue is that load_pretrained() uses state_dict() keys to know what keys are expected
# As such we have to tell is to ignore some keys that are not always in the model
_keys_to_ignore_on_load_unexpected = ["audio_tower.*", "language_model.*"]
# Usually we load encoder weights from a pretrained model, so we don't want to load the decoder weights
# Technically we never hit this issue because these keys are already removed from state_dict() however,
# but there's no harm in keeping it here for when we change that behavior.
_keys_to_ignore_on_load_missing = ["audio_tower.*"]
def __init__(self, config: UltravoxConfig):
super().__init__(config)
self._register_load_state_dict_pre_hook(self._pre_load_state_dict_hook)
self.keep_params: Set[str] = set()
self.vocab_size = config.vocab_size
self.audio_tower = self._create_audio_tower(config)
self.multi_modal_projector = self._create_multi_modal_projector(config)
self.language_model = self._create_language_model(config)
# Determine no_split_modules dynamically to use with FSDP auto_wrap policy.
# FSDP throws an error if some of the layer types are not found in the model.
# This would be something like ["LlamaDecoderLayer", "WhisperEncoderLayer"]
self._no_split_modules = (self.language_model._no_split_modules or []) + (
self.audio_tower._no_split_modules or []
)
self.loss_config = LossConfig()
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
def tie_weights(self):
return self.language_model.tie_weights()
def set_loss_config(self, loss_config: LossConfig):
self.loss_config = loss_config
def _setup_cache(
self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
):
self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)
def _reorder_cache(self, past_key_values, beam_idx):
return self.language_model._reorder_cache(past_key_values, beam_idx)
def resize_token_embeddings(
self,
new_num_tokens: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
) -> nn.Embedding:
model_embeds = self.language_model.resize_token_embeddings(
new_num_tokens, pad_to_multiple_of
)
# update vocab size
self.config.text_config.vocab_size = model_embeds.num_embeddings
self.config.vocab_size = model_embeds.num_embeddings
self.vocab_size = model_embeds.num_embeddings
return model_embeds
def _compute_kl_loss(
self,
lm_output: transformers.modeling_outputs.CausalLMOutputWithPast,
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
alt_input_ids: Optional[torch.Tensor] = None,
alt_attention_mask: Optional[torch.Tensor] = None,
alt_labels: Optional[torch.Tensor] = None,
**kwargs,
):
# disable gradient computation for the teacher model
with torch.no_grad():
# compute the teacher (text-only) model's distribution
alt_inputs_embeds = self.get_input_embeddings().forward(alt_input_ids)
alt_lm_output = self.language_model.forward(
inputs_embeds=alt_inputs_embeds,
labels=alt_labels,
attention_mask=alt_attention_mask,
past_key_values=past_key_values,
**kwargs,
)
# compute the KL divergence loss between the two models
kl_loss = F.kl_div(
F.log_softmax(
lm_output.logits[labels != -100] / self.loss_config.kl_temperature,
dim=-1,
),
F.softmax(
alt_lm_output.logits[alt_labels != -100]
/ self.loss_config.kl_temperature,
dim=-1,
),
reduction="batchmean",
)
return {"loss": kl_loss}
def forward(
self,
input_ids: torch.Tensor,
audio_values: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
audio_token_start_idx: Optional[torch.Tensor] = None,
audio_token_len: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
# the alt_* fields are needed for KL divergence loss
alt_input_ids: Optional[torch.Tensor] = None,
alt_attention_mask: Optional[torch.Tensor] = None,
alt_labels: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]:
"""
Forward pass for the Ultravox model.
`input_ids` are the tokenized text input. They are embedded by the language model as usual.
`audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
projected to the language model's embedding space using a few linear layers.
The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
of the audio embeddings in the merged embeddings.
Args:
input_ids: The tokenized text input.
audio_values: The processed audio values.
inputs_embeds: The embeddings for the input tokens.
labels: The tokenized text labels.
attention_mask: The attention mask for the input.
position_ids: The position ids for the input.
past_key_values: The past key value cache for the language model attention layers.
**kwargs: Additional keyword arguments. Passed directly to the language model.
"""
if inputs_embeds is None:
# B x T -> B x T x D
inputs_embeds = self.get_input_embeddings().forward(input_ids)
if audio_values is not None:
assert (
audio_token_start_idx is not None and audio_token_len is not None
), "audio_token_start_idx and audio_token_len must be provided if audio_values are provided."
assert (
len(audio_token_start_idx) == len(audio_token_len) == len(audio_values)
), "audio_token_start_idx, audio_token_len, and audio_values must have the same batch size."
# B x A/3200 x D
audio_tower_output = self.audio_tower.forward(
audio_values.to(self.audio_tower.dtype)
).last_hidden_state
audio_tower_output = audio_tower_output.to(inputs_embeds.dtype)
audio_embeds = self.multi_modal_projector.forward(audio_tower_output)
# combine audio and text embeddings
for i, (audio, start, length) in enumerate(
zip(audio_embeds, audio_token_start_idx, audio_token_len)
):
length = min(length, audio.shape[0])
inputs_embeds[i, start : start + length] = audio[:length]
lm_output = self.language_model.forward(
inputs_embeds=inputs_embeds,
labels=labels,
attention_mask=attention_mask,
past_key_values=past_key_values,
**kwargs,
)
if self.training:
if self.loss_config.loss_function == LossFunction.CrossEntropy:
return lm_output
elif self.loss_config.loss_function == LossFunction.KL_Divergence:
return self._compute_kl_loss(
lm_output=lm_output,
labels=labels,
past_key_values=past_key_values,
alt_input_ids=alt_input_ids,
alt_attention_mask=alt_attention_mask,
alt_labels=alt_labels,
**kwargs,
)
else:
raise ValueError(
f"Unsupported loss function: {self.loss_config.loss_function}"
)
else:
return lm_output
def prepare_inputs_for_generation(
self,
input_ids: torch.Tensor,
audio_values: Optional[torch.FloatTensor] = None,
audio_token_start_idx: Optional[torch.Tensor] = None,
audio_token_len: Optional[torch.Tensor] = None,
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
cache_position: Optional[torch.Tensor] = None,
**kwargs,
) -> Dict[str, Any]:
model_input = self.language_model.prepare_inputs_for_generation(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
**kwargs,
)
# include audio information in model_input only when it is needed during prefilling
# audio_token_start_idx should always be relative to the current cache position
prefill_start_idx = 0 if cache_position is None else cache_position[0]
if (
audio_values is not None
and audio_token_start_idx is not None
and prefill_start_idx <= torch.max(audio_token_start_idx)
):
model_input["audio_values"] = audio_values
model_input["audio_token_start_idx"] = (
audio_token_start_idx - prefill_start_idx
)
model_input["audio_token_len"] = audio_token_len
return model_input
@classmethod
def _create_multi_modal_projector(
cls, config: UltravoxConfig
) -> "UltravoxProjector":
projector = UltravoxProjector(config)
projector.to(config.torch_dtype)
return projector
@classmethod
def _create_audio_tower(
cls, config: UltravoxConfig
) -> Union[transformers.Wav2Vec2Model, "ModifiedWhisperEncoder"]:
if config.audio_model_id is not None:
if "whisper" in config.audio_model_id is not None:
audio_tower = ModifiedWhisperEncoder.from_pretrained(
config.audio_model_id, torch_dtype=config.torch_dtype
)
else:
audio_tower = transformers.AutoModel.from_pretrained(
config.audio_model_id, torch_dtype=config.torch_dtype
)
else:
if "whisper" in config.audio_config._name_or_path:
audio_tower = ModifiedWhisperEncoder(config.audio_config)
else:
with transformers.modeling_utils.no_init_weights():
# we only ever use from_config if the weights are retrained, hence initializing is not
# required. This makes the model quite creation faster since init on CPU is quite slow.
audio_tower = transformers.AutoModel.from_config(
config.audio_config
)
if isinstance(
audio_tower,
(transformers.Wav2Vec2BertModel, transformers.WhisperModel),
):
# For these models we only need the encoder part
# Wav2Vec2BertModel -> Wav2Vec2BertEncoder
# WhisperModel -> WhisperEncoder
audio_tower = audio_tower.encoder
audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
return audio_tower
@classmethod
def _create_language_model(
cls, config: UltravoxConfig
) -> transformers.LlamaForCausalLM:
if config.text_model_id is not None:
language_model = transformers.AutoModelForCausalLM.from_pretrained(
config.text_model_id,
attn_implementation=config._attn_implementation,
torch_dtype=config.torch_dtype,
)
else:
with transformers.modeling_utils.no_init_weights():
# we only ever use from_config if the weights are retrained, hence initializing is not
# required. This makes the model quite creation faster since init on CPU is quite slow.
language_model = transformers.AutoModelForCausalLM.from_config(
config.text_config,
attn_implementation=config._attn_implementation,
torch_dtype=config.torch_dtype,
)
language_model = apply_lora(language_model, config.text_model_lora_config)
return language_model
def merge_and_unload(self):
if isinstance(self.language_model, peft.PeftModel):
self.language_model = self.language_model.merge_and_unload()
# no need to download base language model weights anymore, so we can remove the id
self.config.text_model_id = None
self.keep_params.update(
set(
[
f"language_model.{name}"
for name, _ in self.language_model.named_parameters()
]
)
)
if isinstance(self.audio_tower, peft.PeftModel):
self.audio_tower = self.audio_tower.merge_and_unload()
# no need to download base audio model weights anymore, so we can remove the id
self.config.audio_model_id = None
self.keep_params.update(
set(
[
f"audio_tower.{name}"
for name, _ in self.audio_tower.named_parameters()
]
)
)
for param in ["text_model_lora_config", "audio_model_lora_config"]:
if hasattr(self.config, param):
delattr(self.config, param)
def push_to_hub(self, *args, **kwargs):
self.merge_and_unload()
return super().push_to_hub(*args, **kwargs)
def save_pretrained(
self, *args, state_dict: Optional[Dict[str, Any]] = None, **kwargs
):
if state_dict is None:
state_dict = super().state_dict()
named_params = dict(self.named_parameters())
state_dict = {
k: v
for k, v in state_dict.items()
if k in self.keep_params
or (k in named_params and named_params[k].requires_grad)
}
super().save_pretrained(*args, state_dict=state_dict, **kwargs)
def _pre_load_state_dict_hook(self, state_dict: Dict[str, Any], *args, **kwargs):
self.keep_params.update(set(state_dict.keys()))
def print_trainable_parameters(self):
"""
Prints the number of trainable parameters in the model (reuses Peft model's method)
"""
count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters
trainable_params, all_param = count_params(self)
logging.info(
f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
f" || trainable%: {100 * trainable_params / all_param:.1f}%"
)
lm_trainable_params, lm_all_params = count_params(self.language_model)
audio_trainable_params, audio_all_params = count_params(self.audio_tower)
projector_trainable_params = (
trainable_params - lm_trainable_params - audio_trainable_params
)
projector_all_params = all_param - lm_all_params - audio_all_params
logging.info(
f"Trainable%: "
f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%"
f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%"
)
# TODO: refactor common parts to a shared module
def is_cache_empty(
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]]
) -> bool:
"""
Check if the cache is empty.
"""
if past_key_values is None:
return True
if isinstance(past_key_values, tuple):
return all(len(c) == 0 for c in past_key_values)
return past_key_values.get_seq_length() == 0
def apply_lora(model: torch.nn.Module, lora_config: dict) -> torch.nn.Module:
"""
Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
"""
unfreeze_layers = lora_config.pop("unfreeze_layers", None)
lora_config = peft.LoraConfig(**lora_config or {})
if lora_config.r == 0:
# freeze the model entirely, except for the specified layers
for name, param in model.named_parameters():
if not unfreeze_layers or not any(
re.match(layer, name) for layer in unfreeze_layers
):
param.requires_grad = False
else:
logging.info(f"Unfreezing layer: {name} with #{param.numel()} params")
else:
model = peft.get_peft_model(model, lora_config)
return model
class StackAudioFrames(nn.Module):
"""
Stack the audio embedding frames to reduce the sequence length by a factor of `stack_factor`.
The number of output frames will be `ceil(T / stack_factor) + 1` where `T` is the number of input frames.
NOTE: the extra +1 is intentional: in case the number of audio tokens are over-estimated by the processor,
we want to make sure `processor.audio_token_replacement` (i.e. EOS) doesn't get leaked into the middle of embeddings.
In most cases this extra padding will get removed in the model's forward function so it has no effect.
"""
def __init__(self, stack_factor: int = 8):
super().__init__()
self.stack_factor = stack_factor
def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
B, T, C = audio_embeds.shape
T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T + self.stack_factor))
B, T, C = audio_embeds.shape
audio_embeds = audio_embeds.view(
B, T // self.stack_factor, C * self.stack_factor
)
return audio_embeds
class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
super().__init__(hidden_size=hidden_size, eps=eps)
self.weight.data.fill_(init)
class SwiGLU(nn.Module):
def forward(self, x):
x, gate = x.chunk(2, dim=-1)
return F.silu(gate) * x
class UltravoxProjector(nn.Sequential):
def __init__(self, config: UltravoxConfig):
super().__init__()
self.hidden_dim = config.hidden_size
self._pad_and_stack = StackAudioFrames(config.stack_factor)
dim = config.audio_config.hidden_size * config.stack_factor
self.ln_pre = RMSNorm(dim, init=config.norm_init)
self.linear_1 = nn.Linear(dim, self.hidden_dim, bias=False)
dim = self.hidden_dim
self.act = transformers.activations.get_activation(config.projector_act)
dim = dim // 2 if config.projector_act == "swiglu" else dim
self.linear_2 = nn.Linear(dim, config.text_config.hidden_size, bias=False)
self.ln_post = RMSNorm(config.text_config.hidden_size, init=config.norm_init)
def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
audio_features = self._pad_and_stack(audio_features)
audio_features = self.ln_pre(audio_features)
hidden_states = self.linear_1(audio_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
hidden_states = self.ln_post(hidden_states)
return hidden_states
class ModifiedWhisperEncoder(whisper.WhisperEncoder):
"""
Encoder portion of OpenAI's Whisper model.
This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
2. allow less than 30 second of audio padding to be passed in:
- relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
- embed_pos is now sliced to match the length of `inputs_embeds`
Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
"""
base_model_prefix = "model.encoder"
_no_split_modules = ["WhisperEncoderLayer"]
def forward(
self,
input_features,
attention_mask=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
expected_seq_length = (
self.config.max_source_positions
* self.conv1.stride[0]
* self.conv2.stride[0]
)
if input_features.shape[-1] > expected_seq_length:
raise ValueError(
f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
)
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
inputs_embeds = inputs_embeds.permute(0, 2, 1)
embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(
hidden_states, p=self.dropout, training=self.training
)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
assert head_mask.size()[0] == (
len(self.layers)
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
None,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
None,
layer_head_mask=(
head_mask[idx] if head_mask is not None else None
),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, encoder_states, all_attentions]
if v is not None
)
return transformers.modeling_outputs.BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions,
)
UltravoxConfig.register_for_auto_class()
UltravoxModel.register_for_auto_class()
transformers.AutoConfig.register("ultravox", UltravoxConfig)
transformers.AutoModel.register(UltravoxConfig, UltravoxModel)
transformers.activations.ACT2FN["swiglu"] = SwiGLU