--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: whisper-small-lang-id results: [] --- # whisper-small-lang-id This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3220 - Accuracy: 0.9555 - F1: 0.9549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.0498 | 0.25 | 2500 | 0.2722 | 0.9578 | 0.9576 | | 0.0039 | 1.12 | 5000 | 0.6877 | 0.8952 | 0.8901 | | 0.0 | 1.38 | 7500 | 0.2562 | 0.9532 | 0.9526 | | 0.0 | 2.25 | 10000 | 0.3220 | 0.9555 | 0.9549 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2