michal-stefanik
commited on
Commit
·
84f0718
1
Parent(s):
b029b75
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_keras_callback
|
5 |
+
model-index:
|
6 |
+
- name: xmelus/mbert
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
This is a model card copied from original Tensorflow model version: https://huggingface.co/fimu-docproc-research/mbert-finetuned
|
11 |
+
|
12 |
+
# xmelus/mbert
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Train Loss: 1.5424
|
17 |
+
- Train Accuracy: 0.1446
|
18 |
+
- Validation Loss: 1.5269
|
19 |
+
- Validation Accuracy: 0.1461
|
20 |
+
- Finished epochs: 24
|
21 |
+
|
22 |
+
|
23 |
+
### Training hyperparameters
|
24 |
+
|
25 |
+
The following hyperparameters were used during training:
|
26 |
+
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -596, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
|
27 |
+
- training_precision: mixed_float16
|
28 |
+
|
29 |
+
### Training results
|
30 |
+
|
31 |
+
Epoch 1/50
|
32 |
+
|
33 |
+
loss: 2.9925 - accuracy: 0.1059 - val_loss: 1.9812 - val_accuracy: 0.1331
|
34 |
+
|
35 |
+
Epoch 2/50
|
36 |
+
|
37 |
+
loss: 1.9979 - accuracy: 0.1307 - val_loss: 1.6063 - val_accuracy: 0.1429
|
38 |
+
|
39 |
+
Epoch 3/50
|
40 |
+
|
41 |
+
loss: 1.5798 - accuracy: 0.1434 - val_loss: 1.5332 - val_accuracy: 0.1461
|
42 |
+
|
43 |
+
Epoch 4/50
|
44 |
+
|
45 |
+
loss: 1.5325 - accuracy: 0.1451 - val_loss: 1.5285 - val_accuracy: 0.1458
|
46 |
+
|
47 |
+
Epoch 5/50
|
48 |
+
|
49 |
+
loss: 1.5415 - accuracy: 0.1448 - val_loss: 1.5449 - val_accuracy: 0.1457
|
50 |
+
|
51 |
+
Epoch 6/50
|
52 |
+
|
53 |
+
loss: 1.5395 - accuracy: 0.1448 - val_loss: 1.5448 - val_accuracy: 0.1456
|
54 |
+
|
55 |
+
Epoch 7/50
|
56 |
+
|
57 |
+
loss: 1.5463 - accuracy: 0.1446 - val_loss: 1.5421 - val_accuracy: 0.1454
|
58 |
+
|
59 |
+
Epoch 8/50
|
60 |
+
|
61 |
+
loss: 1.5352 - accuracy: 0.1451 - val_loss: 1.5536 - val_accuracy: 0.1453
|
62 |
+
|
63 |
+
Epoch 9/50
|
64 |
+
|
65 |
+
oss: 1.5230 - accuracy: 0.1451 - val_loss: 1.5097 - val_accuracy: 0.1466
|
66 |
+
|
67 |
+
Epoch 10/50
|
68 |
+
|
69 |
+
loss: 1.5318 - accuracy: 0.1449 - val_loss: 1.5303 - val_accuracy: 0.1460
|
70 |
+
|
71 |
+
Epoch 11/50
|
72 |
+
|
73 |
+
loss: 1.5364 - accuracy: 0.1448 - val_loss: 1.5280 - val_accuracy: 0.1462
|
74 |
+
|
75 |
+
Epoch 12/50
|
76 |
+
|
77 |
+
loss: 1.5411 - accuracy: 0.1444 - val_loss: 1.5493 - val_accuracy: 0.1455
|
78 |
+
|
79 |
+
Epoch 13/50
|
80 |
+
|
81 |
+
loss: 1.5378 - accuracy: 0.1446 - val_loss: 1.5473 - val_accuracy: 0.1456
|
82 |
+
|
83 |
+
Epoch 14/50
|
84 |
+
|
85 |
+
loss: 1.5357 - accuracy: 0.1449 - val_loss: 1.5310 - val_accuracy: 0.1457
|
86 |
+
|
87 |
+
Epoch 15/50
|
88 |
+
|
89 |
+
loss: 1.5424 - accuracy: 0.1446 - val_loss: 1.5269 - val_accuracy: 0.1461
|
90 |
+
|
91 |
+
Epoch 16/50
|
92 |
+
|
93 |
+
loss: 1.5314 - accuracy: 0.1450 - val_loss: 1.5392 - val_accuracy: 0.1456
|
94 |
+
|
95 |
+
Epoch 17/50
|
96 |
+
|
97 |
+
loss: 1.5309 - accuracy: 0.1451 - val_loss: 1.5567 - val_accuracy: 0.1454
|
98 |
+
|
99 |
+
Epoch 18/50
|
100 |
+
|
101 |
+
loss: 1.5279 - accuracy: 0.1450 - val_loss: 1.5561 - val_accuracy: 0.1452
|
102 |
+
|
103 |
+
Epoch 19/50
|
104 |
+
|
105 |
+
loss: 1.5311 - accuracy: 0.1450 - val_loss: 1.5400 - val_accuracy: 0.1460
|
106 |
+
|
107 |
+
Epoch 20/50
|
108 |
+
|
109 |
+
loss: 1.5332 - accuracy: 0.1449 - val_loss: 1.5347 - val_accuracy: 0.1460
|
110 |
+
|
111 |
+
Epoch 21/50
|
112 |
+
|
113 |
+
loss: 1.5319 - accuracy: 0.1452 - val_loss: 1.5410 - val_accuracy: 0.1458
|
114 |
+
|
115 |
+
Epoch 22/50
|
116 |
+
|
117 |
+
loss: 1.5327 - accuracy: 0.1449 - val_loss: 1.5352 - val_accuracy: 0.1460
|
118 |
+
|
119 |
+
Epoch 23/50
|
120 |
+
|
121 |
+
loss: 1.5278 - accuracy: 0.1451 - val_loss: 1.5289 - val_accuracy: 0.1458
|
122 |
+
|
123 |
+
Epoch 24/50
|
124 |
+
|
125 |
+
loss: 1.5234 - accuracy: 0.1451 - val_loss: 1.5568 - val_accuracy: 0.1449
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
### Framework versions
|
130 |
+
|
131 |
+
- Transformers 4.22.1
|
132 |
+
- Torch 1.13.1
|
133 |
+
- Datasets 2.5.1
|
134 |
+
- Tokenizers 0.12.1
|