ferferefer
commited on
Delete app.py
Browse files
app.py
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import tensorflow as tf
|
3 |
-
from tf.keras.applications import EfficientNetV2B0
|
4 |
-
from keras.layers import Flatten,Dense,Dropout,GlobalAveragePooling2D
|
5 |
-
from tf.keras.models import load_model
|
6 |
-
from tf.keras.preprocessing.image import load_img
|
7 |
-
from tf.keras.preprocessing.image import img_to_array
|
8 |
-
from keras.models import Model
|
9 |
-
from transformers import pipeline
|
10 |
-
import numpy as np
|
11 |
-
from huggingface_hub import hf_hub_url, cached_download
|
12 |
-
|
13 |
-
img_shape = (224,224,3)
|
14 |
-
model = EfficientNetV2B0(include_top = False,input_shape=img_shape)
|
15 |
-
flat_1=GlobalAveragePooling2D()(model.output)
|
16 |
-
capa_3 = Dense(1,activation='sigmoid')(flat_1)
|
17 |
-
model = Model(inputs=model.inputs,outputs = capa_3)
|
18 |
-
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),loss="BinaryCrossentropy", metrics=["accuracy"])
|
19 |
-
#Subir los pesos del modelo
|
20 |
-
repo_id = "ferferefer/RIM_ONE_Glaucoma"
|
21 |
-
filename = "vgg_rim_checkpoint.h5" # o el path a tu SavedModel
|
22 |
-
# Obtener la URL y descargar el archivo (temporalmente)
|
23 |
-
model_file = cached_download(hf_hub_url(repo_id, filename))
|
24 |
-
# Cargar el modelo
|
25 |
-
model.load_weights(model_file)
|
26 |
-
|
27 |
-
|
28 |
-
st.title('RIM_ONE Glaucoma Image Classifier')
|
29 |
-
input_image = st.file_uploader('Upload image')
|
30 |
-
|
31 |
-
if st.button('PREDICT'):
|
32 |
-
|
33 |
-
predict = load_img(input_image, target_size=img_shape)
|
34 |
-
predict_modified = img_to_array(predict)
|
35 |
-
predict_modified = np.expand_dims(predict_modified, axis=0)
|
36 |
-
result = model.predict(predict_modified)
|
37 |
-
if result < 0.5:
|
38 |
-
probability = 1 - result[0][0]
|
39 |
-
print(f"Healthy with {probability}%")
|
40 |
-
|
41 |
-
else:
|
42 |
-
probability = result[0][0]
|
43 |
-
print(f"Glaucoma with {probability}%")
|
44 |
-
|
45 |
-
image1 = load_img(input_image)
|
46 |
-
image1 = img_to_array(image1)
|
47 |
-
image1 = np.array(image1)
|
48 |
-
|
49 |
-
|
50 |
-
st.image(image1, width=500)
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|